Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### **Power MOSFET** # 30 Amps, 60 Volts, Logic Level, N-Channel TO-220 and D²PAK Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits. #### **Features** • Pb-Free Packages are Available #### **Typical Applications** - Power Supplies - Converters - Power Motor Controls - Bridge Circuits #### **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|---|----------------|------------| | Drain-to-Source Voltage | V_{DSS} | 60 | Vdc | | Drain-to-Gate Voltage (R _{GS} = 10 M Ω) | V_{DGR} | 60 | Vdc | | Gate-to-Source Voltage - Continuous - Non-Repetitive (t _p ≤10 ms) | V _{GS}
V _{GS} | ±15
±20 | Vdc | | $ \begin{array}{ll} \text{Drain Current} \\ & - \text{Continuous @ T}_{A} = 25^{\circ}\text{C} \\ & - \text{Continuous @ T}_{A} = 100^{\circ}\text{C} \\ & - \text{Single Pulse } (t_{p} \! \leq \! 10 \; \mu\text{s}) \end{array} $ | I _D
I _D
I _{DM} | 30
15
90 | Adc
Apk | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | P _D | 88.2
0.59 | W
W/°C | | Operating and Storage Temperature Range | T _J , T _{stg} | -55 to
+175 | °C | | Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 50$ Vdc, $V_{GS} = 5.0$ Vdc, $L = 0.3$ mH $I_{L(pk)} = 26$ A, $V_{DS} = 60$ Vdc) | E _{AS} | 101 | mJ | | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 1.7 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds | TL | 260 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. #### ON Semiconductor® http://onsemi.com ## 30 AMPERES, 60 VOLTS $R_{DS(on)} = 46 \text{ m}\Omega$ **MARKING** NTx30N06L = Device Code x = P or B A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. ### **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |---|---|----------------------|---------|--------------|-----------|--------------| | OFF CHARACTERISTICS | | | | | | | | Drain-to-Source Breakdown Voltage (Note 1) $ (V_{GS} = 0 \ Vdc, \ I_D = 250 \ \mu Adc) $ Temperature Coefficient (Positive) | | V _{(BR)DSS} | 60
- | 71.8
69 | _
_ | Vdc
mV/°C | | Zero Gate Voltage Drain Current $(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ | | I _{DSS} | -
- | -
- | 1.0
10 | μAdc | | Gate-Body Leakage Current (V _{GS} = | I _{GSS} | - | - | ±100 | nAdc | | | ON CHARACTERISTICS (Note 1) | | | | | | | | Gate Threshold Voltage (Note 1) $ (V_{DS} = V_{GS}, I_D = 250 \mu Adc) $ Threshold Temperature Coefficient (Negative) | | V _{GS(th)} | 1.0 | 1.7
4.8 | 2.0
- | Vdc
mV/°C | | Static Drain-to-Source On-Resistance (Note 1) (V _{GS} = 5.0 Vdc, I _D = 15 Adc) | | R _{DS(on)} | - | 38 | 46 | mΩ | | Static Drain-to-Source On-Voltage (Note 1)
$(V_{GS} = 5.0 \text{ Vdc}, I_D = 30 \text{ Adc})$
$(V_{GS} = 5.0 \text{ Vdc}, I_D = 15 \text{ Adc}, T_J = 150^{\circ}\text{C})$ | | V _{DS(on)} | -
- | 1.3
1.06 | 1.7 | Vdc | | Forward Transconductance (Note 1) | 9FS | - | 21 | _ | mhos | | | DYNAMIC CHARACTERISTICS | | | | | | | | Input Capacitance | W 05.VI V 0.VI | C _{iss} | - | 810 | 1150 | pF | | Output Capacitance | $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$ | C _{oss} | - | 260 | 370 | | | Transfer Capacitance | , | C_{rss} | _ | 80 | 115 | | | SWITCHING CHARACTERISTICS (No | ote 2) | | | | | | | Turn-On Delay Time | | $t_{d(on)}$ | _ | 10 | 20 | ns | | Rise Time | $(V_{DD} = 30 \text{ Vdc}, I_D = 30 \text{ Adc},$ | t _r | - | 200 | 400 | | | Turn-Off Delay Time | $V_{GS} = 5.0 \text{ Vdc}, R_{G} = 9.1 \Omega) \text{ (Note 1)}$ | t _{d(off)} | - | 15.6 | 30 | | | Fall Time | | t _f | - | 62 | 120 | | | Gate Charge | | Q _T | - | 16 | 32 | nC | | | $(V_{DS} = 48 \text{ Vdc}, I_{D} = 30 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc}) \text{ (Note 1)}$ | Q ₁ | - | 3.9 | - | 1 | | | VGS = 0.0 Vd0) (Note 1) | | - | 10 | - | | | SOURCE-DRAIN DIODE CHARACTE | RISTICS | | | | | | | Forward On-Voltage | $ \begin{aligned} &(I_S=30 \text{ Adc, } V_{GS}=0 \text{ Vdc) (Note 1)} \\ &(I_S=30 \text{ Adc, } V_{GS}=0 \text{ Vdc, } T_J=150^{\circ}\text{C)} \end{aligned} $ | V_{SD} | - | 1.01
1.03 | 1.2
- | Vdc | | Reverse Recovery Time | | t _{rr} | - | 50 | - | ns | | | $(I_S = 30 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 1)}$ | t _a | - | 32 | - | | | | 3 | t _b | - | 17 | - | | | Reverse Recovery Stored Charge | | Q _{RR} | _ | 0.082 | _ | μC | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance versus Gate–to–Source Voltage Figure 4. On-Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current versus Voltage Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature Figure 13. Thermal Response Figure 14. Diode Reverse Recovery Waveform #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|---------------------------------|-----------------------| | NTP30N06L | TO-220 | 50 Units / Rail | | NTP30N06LG | TO-220
(Pb-Free) | 50 Units / Rail | | NTB30N06L | D ² PAK | 50 Units / Rail | | NTB30N06LG | D ² PAK
(Pb-Free) | 50 Units / Rail | | NTB30N06LT4 | D ² PAK | 800 Tape & Reel | | NTB30N06LT4G | D ² PAK
(Pb-Free) | 800 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ### **PACKAGE DIMENSIONS** TO-220 CASE 221A-09 ISSUE AA - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | J | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | - STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN #### **PACKAGE DIMENSIONS** #### D²PAK CASE 418B-04 **ISSUE J** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04. | | INCHES | | MILLIM | IETERS | |-----|-----------|-----------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.340 | 0.380 | 8.64 | 9.65 | | В | 0.380 | 0.405 | 9.65 | 10.29 | | С | 0.160 | 0.190 | 4.06 | 4.83 | | D | 0.020 | 0.035 | 0.51 | 0.89 | | E | 0.045 | 0.055 | 1.14 | 1.40 | | F | 0.310 | 0.350 | 7.87 | 8.89 | | G | 0.100 | BSC | 2.54 BSC | | | Н | 0.080 | 0.110 | 2.03 | 2.79 | | J | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.090 | 0.110 | 2.29 | 2.79 | | L | 0.052 | 0.072 | 1.32 | 1.83 | | M | 0.280 | 0.320 | 7.11 | 8.13 | | N | 0.197 REF | | 5.00 REF | | | Р | 0.079 | 0.079 REF | | REF | | R | 0.039 | REF | 0.99 REF | | | S | 0.575 | 0.625 | 14.60 | 15.88 | | ٧ | 0.045 | 0.055 | 1.14 | 1.40 | STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN #### **SOLDERING FOOTPRINT*** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights on the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.