

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

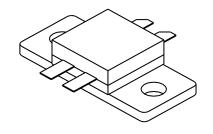
0510-50A

50 Watts, 28 Volts, Class AB Defcom 500 - 1000 MHz

GENERAL DESCRIPTION

The 0510-50A is a double input matched COMMON EMITTER broadband transistor specifically intended for use in the 500-1000 MHz frequency band. It may be operated in Class AB or C. Gold metallization and silicon diffused resistors ensure improved ruggedness and high reliability.

ABSOLUTE MAXIMUM RATINGS

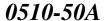

Maximum Power Dissipation @ 25°C 125 Watts

Maximum Voltage and Current

BVcesCollector to Emiter Voltage60 VoltsBVeboEmitter to Base Voltage4.0 VoltsIcCollector Current3.7 A

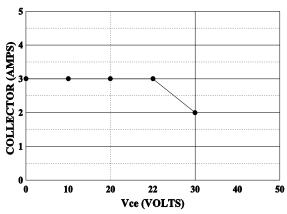
Maximum Temperatures

Storage Temperature $-65 \text{ to } +200^{\circ}\text{C}$ Operating Junction Temperature $+200^{\circ}\text{C}$ CASE OUTLINE 55AV - Style 2

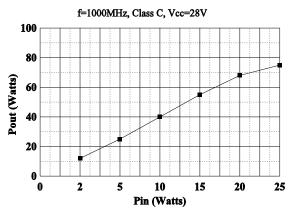

ELECTRICAL CHARACTERISTICS @ 25 °C

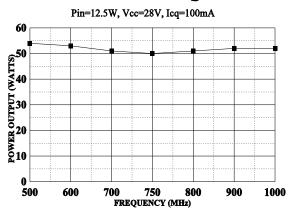
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout Pin Pg ηc VSWR	Power Output Power Input Power Gain Efficiency Load Mismatch Tolerance	F = 1000 MHz Vcc = 28 Volts Vcb = 28V, Po = 50W	50	7.0 50	12.5 5:1	Watts Watts dB %

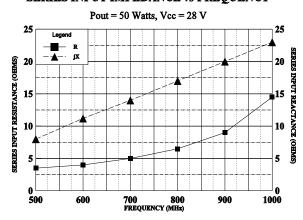
BVebo BVces BVceo	Emitter to Base Breakdown Collector to Emitter Breakdown Collector to Emitter Breakdown	Ie = 5 mA Ic = 100 mA Ie = 50 mA	4.0 60 27			Volts Volts Volts
Cob h _{FE}	Output Capacitance DC - Current Gain	Vcb = 28 V, F = 1 MHz Vce = 5 V, Ic = 500 mA	10	27		pF
θjc	Thermal Resistance	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1.4	°C/W

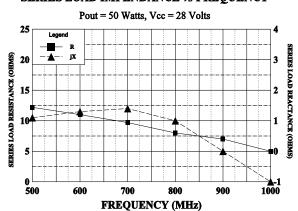

Issue August 1996

GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.




DC SAFE OPERATING AREA


POWER OUTPUT vs POWER INPUT


POWER OUTPUT VS FREQUENCY

SERIES INPUT IMPEDANCE vs FREQUENCY

SERIES LOAD IMPENDANCE vs FREQUENCY

