imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Radial Leaded > USBR Series

40A short circuit rating

Operating voltages of

6-16V

USBR Series

Agency Approvals

AGENCY	AGENCY FILE NUMBER
c FL [®] us	E183209
Д тüv	R50119318

Description

The USBR Series radial leaded device is designed to provide overcurrent protection for USB applications where space is not a concern.

Features

- RoHS compliant and lead-free
- Fast time-to-trip
- Meets all USB protection requirements
- Applications
- Computers & peripherals
- Any USB application

Additional Information

Datasheet

 \mathbf{V}

Part Number	l _{hold}	l _{trip}	V _{max}	l _{max}	P _d		Maximum Time To Trip		Resistance		Agency Approvals	
	(A)	(A)	(Vdc)	(A)	max. (W)	Current (A)	Time (Sec.)	R _{min} (Ω)	R _{1max} (Ω)	c 🔨 us	Д тüv	
06R075B	0.75	1.30	6	40	0.3	8.00	0.4	0.100	0.230	Х	Х	
06R120B	1.20	2.00	6	40	0.6	8.00	0.5	0.065	0.140	Х	Х	
06R155B	1.55	2.70	6	40	0.6	7.75	2.2	0.040	0.100	Х	Х	
16R090B	0.90	1.80	16	40	0.6	8.00	1.2	0.070	0.180	Х	Х	
16R110B	1.10	2.20	16	40	0.7	8.00	2.3	0.050	0.140	Х	Х	
16R135B	1.35	2.70	16	40	0.8	8.00	4.5	0.040	0.120	Х	Х	
16R160B	1.60	3.20	16	40	0.9	8.00	9.0	0.030	0.110	Х	Х	
16R185B	1.85	3.70	16	40	1.0	8.00	10.0	0.030	0.090	Х	Х	
16R250B	2.50	5.00	16	40	1.2	8.00	40.0	0.020	0.060	Х	Х	

I held = Hold current: maximum current device will pass without tripping in 20°C still air.

I trip = Trip current: minimum current at which the device will trip in 20°C still air.

V max = Maximum voltage device can withstand without damage at rated current (I max)

I max = Maximum fault current device can withstand without damage at rated voltage (V max)

 P_d = Power dissipated from device when in the tripped state at 20°C still air.

R min = Minimum resistance of device in initial (un-soldered) state.

R typ = Typical resistance of device in initial (un-soldered) state.

R $_{1max}$ = Maximum resistance of device at 20°C measured one hour after tripping or reflow soldering of 260°C for 20 sec.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

WARNING

· Users shall independently assess the suitability of these devices for each of their applications

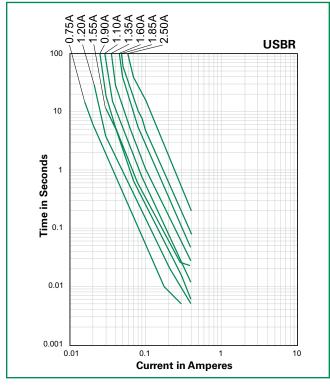
• Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire

• These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration

• Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices

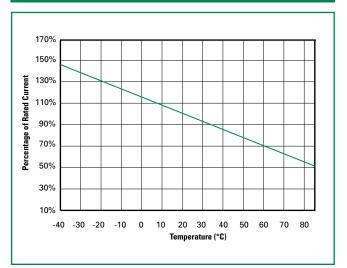
• These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses

· Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.



Radial Leaded > USBR Series

Temperature Rerating

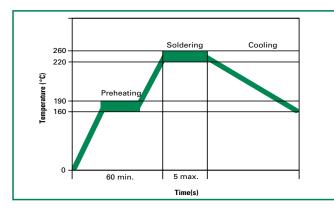

	Ambient Operation Temperature										
	-40°C	-20°C	0°C	20°C	40°C	50°C	60°C	70°C	85°C		
Part Number		Hold Current (A)									
06R075B	1.05	0.95	0.85	0.75	0.65	0.60	0.55	0.50	0.43		
06R120B	1.69	1.52	1.36	1.20	1.04	0.96	0.88	0.80	0.68		
06R155B	2.17	1.96	1.75	1.55	1.34	1.24	1.13	1.03	0.88		
16R090B	1.31	1.17	1.04	0.90	0.75	0.69	0.61	0.55	0.47		
16R110B	1.60	1.43	1.27	1.10	1.00	0.92	0.75	0.67	0.57		
16R135B	1.96	1.76	1.55	1.35	1.12	1.04	0.92	0.82	0.70		
16R160B	2.32	2.08	1.84	1.60	1.33	1.23	1.09	0.98	0.83		
16R185B	2.68	2.41	2.13	1.85	1.54	1.42	1.26	1.13	0.96		
16R250B	3.63	3.25	2.88	2.50	2.08	1.93	1.70	1.53	1.30		

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

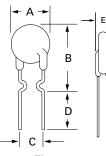
Temperature Rerating Curve

Note:


Typical Temperature rerating curve, refer to table for derating data

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>.

Radial Leaded > USBR Series


Soldering Parameters

Physical Specifications

Lead Material	.90-2.50A: Tin-plated Copper clad steel .75A: Tin-plated Copper
Soldering Characteristics	Solderability per MIL–STD–202, Method 208
Insulating Material	Cured, flame retardant epoxy polymer meets UL 94V-0 requirements.
Device Labeling	Marked with 'LF', voltage, current rating, and date code.

Dimensions (mm)

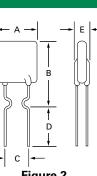


Figure 1

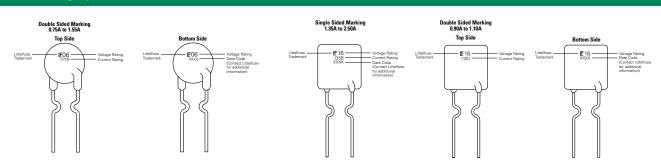
Figure 2

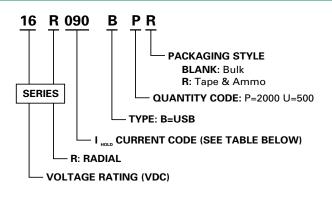
Pre-Heating Zone	Refer to the condition recommended by the flux manufacturer.				
	Max. ramping rate should not exceed 4°C/ Sec.				
	Max. solder temperature should not exceed 260°C				
Soldering Zone	Time within 5°C of actual Max. solder temperature within 3 – 5 seconds				
	Total time from 25°C room to Max. solder temperature within 5 minutes including Pre-Heating time				
	Cooling by natural convection in air.				
Cooling Zone	Max. ramping down rate should not exceed 6°C/Sec.				

Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	+85°C, 1000 hours -/+5% typical resistance change
Humidity Aging	+85°C, 85% R.H., 1000 hours -/+5% typical resistance change
Thermal Shock	+85°C to -40°C 10 times -/+5% typical resistance change
Solvent Resistance	MIL–STD–202, Method 215
Moisture Sensivitivy Level	Level 1, J–STD–020

D		А		В		C D		E		Physic	al Char	acteristics		
Part Number	Figure	Inches	mm	Lead	(dia)	Material								
Hambor	Max.	Max.	Max.	Max.	Тур.	Тур.	Min.	Min.	Max.	Max.	Inches	mm	Widlefidi	
06R075B	1	0.27	6.9	0.45	11.4	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/Cu
06R120B	1	0.27	6.9	0.46	11.7	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
06R155B	1	0.27	6.9	0.46	11.7	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
16R090B	2	0.29	7.4	0.48	12.2	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
16R110B	2	0.29	7.4	0.56	14.2	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
16R135B	2	0.35	8.9	0.53	13.5	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
16R160B	2	0.35	8.9	0.60	15.2	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
16R185B	2	0.40	10.2	0.62	15.7	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe
16R250B	2	0.45	11.4	0.72	18.3	0.20	5.1	0.30	7.6	0.12	3	0.020	0.51	Sn/CuFe


© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 03/22/17


POLY-FUSE[®] Resettable PTCs

Radial Leaded > USBR Series

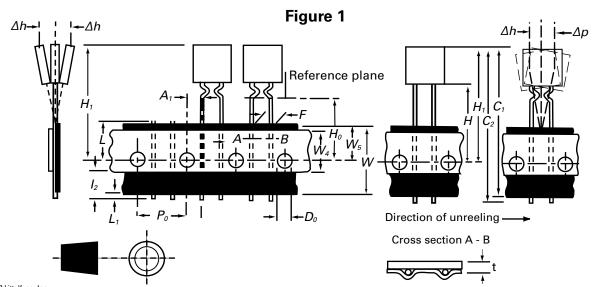
Part Marking System

Part Ordering Number System

Ordering Information

Part Number	Ordering Number	l _{hold} (A)	I _{hold} Code	Packaging Option	Quantity	Quantity & Packaging Codes
06R075B	06R075BU	0.75	075	Bulk	500	U
06R075B	06R075BPR	0.75	075	Tape and Ammo	2000	PR
0601200	06R120BU	1.20	120	Bulk	500	U
06R120B	06R120BPR	1.20	120	Tape and Ammo	2000	PR
	06R155BU	1.55	165	Bulk	500	U
06R155B	06R155BPR	1.55	155	Tape and Ammo	2000	PR
16R090B	16R090BU	0.90	000	Bulk	500	U
	16R090BPR		090	Tape and Ammo	2000	PR
1001100	16R110BU	1.10	110	Bulk	500	U
16R110B	16R110BPR	1.10	110	Tape and Ammo	2000	PR
1001050	16R135BU	1.05	105	Bulk	500	U
16R135B	16R135BPR	1.35	135	Tape and Ammo	2000	PR
1001000	16R160BU	1.00	100	Bulk	500	U
16R160B	16R160BPR	1.60	160	Tape and Ammo	2000	PR
1001050	16R185BU	1.05	105	Bulk	500	U
16R185B	16R185BPR	1.85	185	Tape and Ammo	2000	PR
1602500	16R250BU	2 50	250	Bulk	500	U
16R250B	16R250BPR	2.50	250	Tape and Ammo	2000	PR

Radial Leaded > USBR Series


Tape and Ammo Specifications

Devices taped using EIA468-B/IE286-2 standards. See table below and Figure 1 for details.

vevices taped using EIA468-B/IE286-2 stan	ualus. See lable be	elow and i igure				
			Dimensions			
Dimension	EIA Mark	IEC Mark	Dim. (mm)	Tol. (mm)		
Carrier tape width	w	w	18	-0.5 / +1.0		
Hold down tape width	W ₄	w _o	11	min.		
Top distance between tape edges	W ₆	W ₂	3	max.		
Sprocket hole position	W ₅	W ₁	9	-0.5 / +0.75		
Sprocket hole diameter*	D ₀	D ₀	4	-/+ 0.32		
Abscissa to plane(straight lead)	н	н	18.5	-/+ 3.0		
Abscissa to plane(kinked lead)	H _o	H _o	16	-/+ 0.5		
Abscissa to top	H ₁	H ₁	32.2	max.		
Overall width w/o lead protrusion	C ₁		42.5	max.		
Overall width w/ lead protrusion	C ₂		43.2	max.		
Lead protrusion	L ₁	I ₁	1.0	max.		
Protrusion of cut out	L	L	11	max.		
Protrusion beyond hold-down tape	I ₂	I ₂	Not specified			
Sprocket hole pitch	Po	Po	12.7	-/+ 0.35		
Pitch tolerance			20 consecutive	-/+ 1		
Device pitch			12.7			
Tape thickness	t	t	0.9	max.		
Tape thickness with splice	t ₁		2.0	max.		
Splice sprocket hole alignment			0	-/+ 0.3		
Body lateral deviation	Δh	Δh	0	-/+ 1.0		
Body tape plane deviation	Δp	Δр	0	-/+ 1.3		
Ordinate to adjacent component lead*	P ₁	P ₁	3.81	-/+ 1.0		
Lead spacing*	F	F	5.08	-/+ 0.8		

*Differs from EIA specification.

Tape and Ammo Diagram

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 03/22/17