

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

0910 - 150M

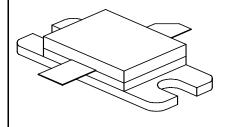
150 Watts - 48 Volts, 150µs, 5% Radar 890 - 1000 MHz

GENERAL DESCRIPTION

The 0910-150M is an internally matched, COMMON BASE transistor capable of providing 150 Watts of pulsed RF output power at 150 μs pulse width, 5% duty factor across the band 890 to 1000 MHz. This hermetically solder-sealed transistor is specifically designed for P-Band radar applications. It utilizes gold metallization to provide high reliability.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C 400 Watts


Maximum Voltage and Current

BVces Collector to Emitter Voltage 65 Volts
BVebo Emitter to Base Voltage 3.5 Volts
Ic Collector Current 12 Amps

Maximum Temperatures

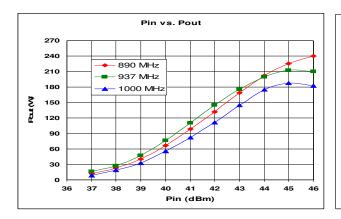
Storage Temperature $-65 \text{ to} + 200^{\circ}\text{C}$ Operating Junction Temperature $+200^{\circ}\text{C}$

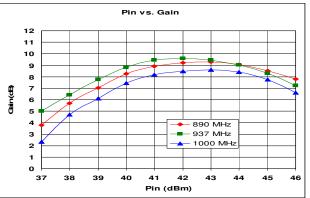
CASE OUTLINE 55KT, STYLE 1

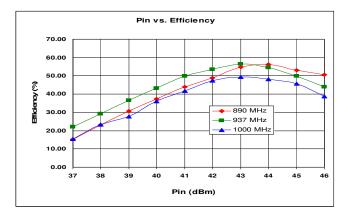
ELECTRICAL CHARACTERISTICS @ 25 °C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout Pg ¶c Pd Rl VSWR¹ VSWRs	Power Out Power Gain Collector Efficiency Pulse Droop Input Return loss Load Mismatch Tolerance Load Mismatch - Stability	Freq = 890 – 1000 MHz Vcc = 48 Volts Pin = 23 Watts Pulse Width = 150µs Duty Factor = 5%	150 8.1 40	8.5 45	210 0.5 3:1 2:1	Watts dB % dB dB

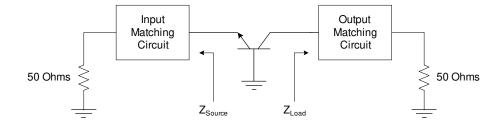
Note 1: Pulse condition of 150µsec, 5%.


Bvces	Collector to Emitter Breakdown	Ic = 10 mA	65		Volts
Ices	Collector to Emitter Leakage	Vce = 50 Volts		10	mA
Iebo	Emitter to Base Leakage	Vebo = 2.5 Volts		5.0	mA
$\mathbf{\theta}\mathbf{jc}^1$	Thermal Resistance	Rated Pulse Condition		0.48	°C/W

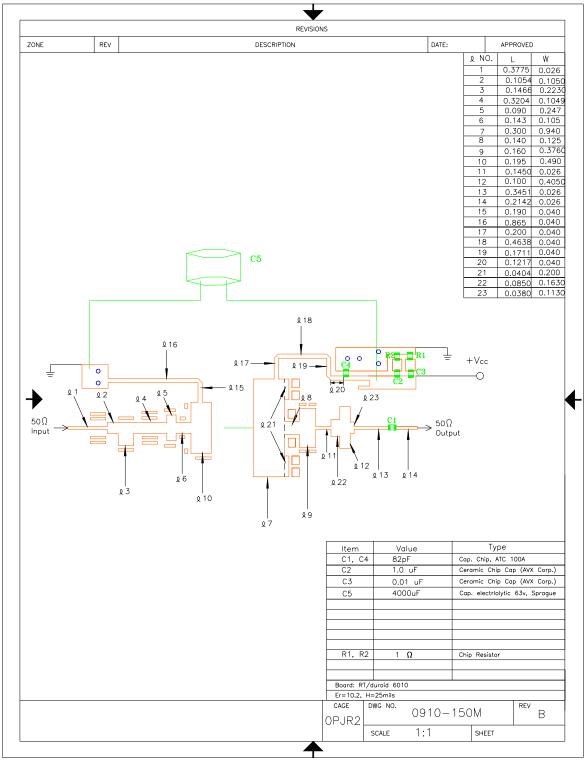

Issue Mar 2005



0910-150M

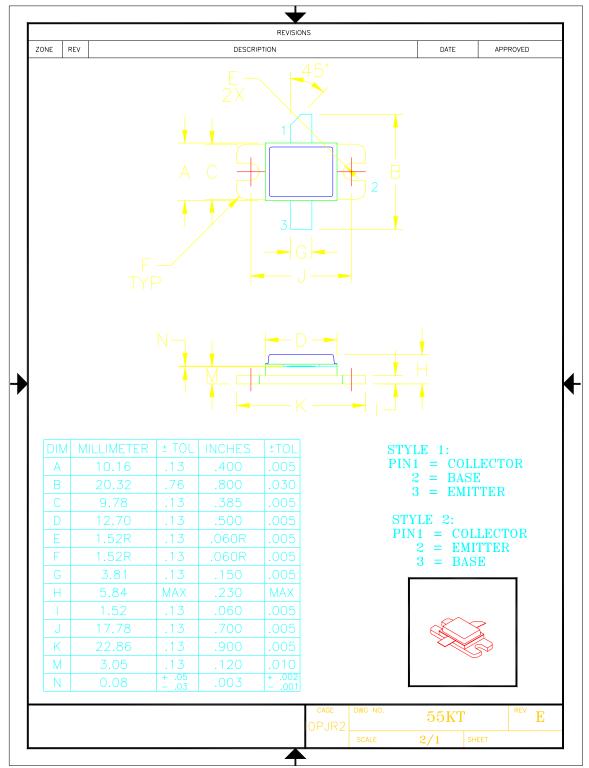

Performance Curves –

Impedance Information


Frequencies (MHz)	$Z_{\it Source}(\Omega)$	$Z_{Load}(\Omega)^{2}$
890	4.0 - j4.2	1.85 - j3.2
937	4.0 - j3.5	1.97 – j3.0
1000	4.1 - j2.5	2.1 - j3.0

Note 2: Z_{Load} exclusive of C1 and C4 on the test circuit

0910–150M


Test Circuit

0910-150M

Case Outline

