# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



00336 Low Power 4-Stage Counter/Shift Register

## FAIRCHILD

SEMICONDUCTOR

## 100336 Low Power 4-Stage Counter/Shift Register

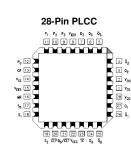
## **General Description**

The 100336 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select (S<sub>n</sub>) inputs determine the mode of operation, as shown in the Function Select table. Two Count Enable (CEP, CET) inputs are provided for ease of cascading in multistage counters. One Count Enable (CET) input also doubles as a Serial Data (D<sub>0</sub>) input for shift-up operation. For shift-down operation, D<sub>3</sub> is the Serial Data input. In counting operations the Terminal Count (TC) output goes LOW when the counter reaches 15 in the count/up mode or 0 (zero) in the count/down mode. In the shift modes, the TC output repeats the  $Q_3$  output. The dual nature of this TC/Q<sub>3</sub> output and the  $D_0/CET$  input means that one interconnection from one stage to the next higher stage serves as the link for multistage counting or shift-up operation. The indi-

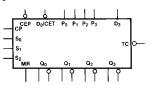
vidual Preset (P<sub>n</sub>) inputs are used to enter data in parallel or to preset the counter in programmable counter applications. A HIGH signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the flipflops. In addition, a synchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have 50 k $\Omega$  pull-down resistors.

#### **Features**

- 40% power reduction of the 100136
- 2000V ESD protection
- Pin/function compatible with 100136
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range


## **Ordering Code:**

| Order Number | Package Number | Package Description                                                                                                   |
|--------------|----------------|-----------------------------------------------------------------------------------------------------------------------|
| 100336SC     | M24B           | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide                                             |
| 100336PC     | N24E           | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide                                                 |
| 100336QC     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square                                                  |
| 100336QI     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square<br>Industrial Temperature Range (-40°C to +85°C) |


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

## **Connection Diagrams**





## Logic Symbol

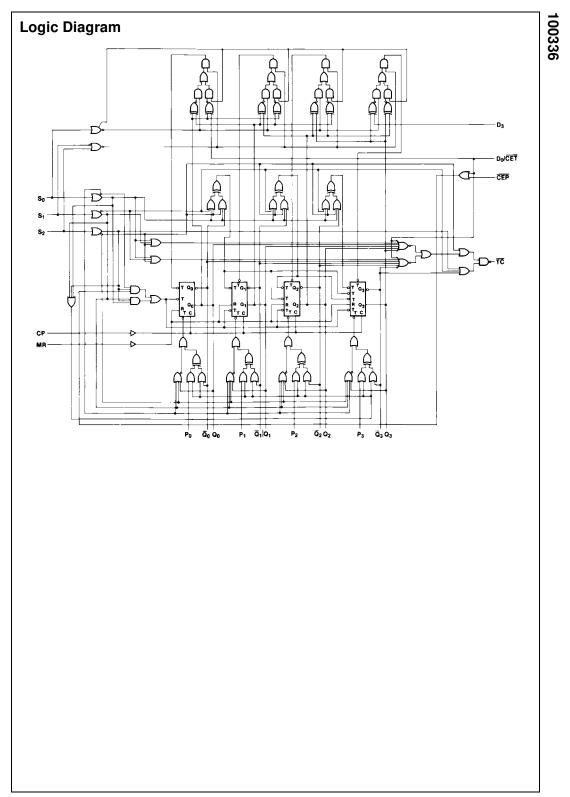


## **Function Select Table**

| S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | Function      |
|----------------|----------------|----------------|---------------|
| L              | L              | L              | Parallel Load |
| L              | L              | н              | Complement    |
| L              | Н              | L              | Shift Left    |
| L              | н              | н              | Shift Right   |
| н              | L              | L              | Count Down    |
| н              | L              | н              | Clear         |
| н              | н              | L              | Count Up      |
| н              | н              | н              | Hold          |

## **Pin Descriptions**

| Pin Names                         | Description                              |
|-----------------------------------|------------------------------------------|
| CP                                | Clock Pulse Input                        |
| CEP                               | Count Enable Parallel Input (Active LOW) |
| D <sub>0</sub> /CET               | Serial Data Input/Count Enable           |
|                                   | Trickle Input (Active LOW)               |
| S <sub>0</sub> -S <sub>2</sub>    | Select Inputs                            |
| MR                                | Master Reset Input                       |
| P <sub>0</sub> –P <sub>3</sub>    | Preset Inputs                            |
| D <sub>3</sub><br>TC              | Serial Data Input                        |
| TC                                | Terminal Count Output                    |
| Q <sub>0</sub> -Q <sub>3</sub>    | Data Outputs                             |
| $\overline{Q}_0 - \overline{Q}_3$ | Complementary Data Outputs               |


## **Truth Table**

 $Q_0 = LSB$ 

|                                           |    |                |                |                | Input | s                    |       |    |                  |                    | 0                | utpu             | its                     |                                |
|-------------------------------------------|----|----------------|----------------|----------------|-------|----------------------|-------|----|------------------|--------------------|------------------|------------------|-------------------------|--------------------------------|
|                                           | MR | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | CEP   | $D_0/\overline{CET}$ | $D_3$ | СР | $Q_3$            | $Q_2$              | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{0}$ | TC                      | Mode                           |
|                                           | L  | L              | L              | L              | Х     | Х                    | Х     |    | $P_3$            | $P_2$              | $P_1$            | $P_0$            | L                       | Preset (Parallel Load)         |
|                                           | L  | L              | L              | Н              | Х     | Х                    | Х     | ζ  | $\overline{Q}_3$ | $\overline{Q}_2$   | $\overline{Q}_1$ | $\overline{Q}_0$ | L                       | Invert                         |
|                                           | L  | L              | н              | L              | Х     | Х                    | Х     |    | $D_3$            | $Q_3$              | $Q_2$            | $Q_1$            | D <sub>3</sub>          | Shift to LSB                   |
|                                           | L  | L              | Н              | Н              | Х     | Х                    | Х     | ζ  | $Q_2$            | $Q_1$              | $Q_0$            | $D_0$            | Q <sub>3</sub> (Note 1) | Shift to MSB                   |
|                                           | L  | Н              | L              | L              | L     | L                    | Х     | ζ  |                  | -                  | minu             |                  | 1                       | Count Down                     |
|                                           | L  | н              | L              | L              | н     | L                    | Х     | Х  | $Q_3$            | $Q_2$              | Q <sub>1</sub>   | $Q_0$            | 1                       | Count Down with CEP not active |
|                                           | L  | н              | L              | L              | Х     | н                    | Х     | Х  | $Q_3$            | $Q_2$              | $Q_1$            | $Q_0$            | Н                       | Count Down with CET not active |
|                                           | L  | Н              | L              | Н              | Х     | Х                    | Х     | ζ  | L                | L                  | L                | L                | Н                       | Clear                          |
|                                           | L  | Н              | Н              | L              | L     | L                    | Х     | ζ  | (C               | 0 <sub>0–3</sub> ) | plus             | 5 1              | 2                       | Count Up                       |
|                                           | L  | н              | н              | L              | Н     | L                    | Х     | Х  | $Q_3$            | $Q_2$              | $Q_1$            | $Q_0$            | 2                       | Count Up with CEP not active   |
|                                           | L  | н              | н              | L              | Х     | н                    | Х     | Х  | $Q_3$            | $Q_2$              | $Q_1$            | $Q_0$            | Н                       | Count Up with CET not active   |
|                                           | L  | Н              | Н              | Н              | Х     | Х                    | Х     | Х  | $Q_3$            | $Q_2$              | Q <sub>1</sub>   | $Q_0$            | Н                       | Hold                           |
|                                           | Н  | L              | L              | L              | Х     | Х                    | Х     | Х  | L                | L                  | L                | L                | L                       |                                |
|                                           | Н  | L              | L              | н              | Х     | Х                    | Х     | Х  | L                | L                  | L                | L                | L                       |                                |
|                                           | Н  | L              | н              | L              | Х     | Х                    | Х     | Х  | L                | L                  | L                | L                | L                       |                                |
|                                           | Н  | L              | н              | н              | Х     | Х                    | Х     | Х  | L                | L                  | L                | L                | L                       | Asynchronous                   |
|                                           | Н  | н              | L              | L              | Х     | L                    | Х     | Х  | L                | L                  | L                | L                | L                       | Master Reset                   |
|                                           | Н  | н              | L              | L              | Х     | Н                    | Х     | Х  | L                | L                  | L                | L                | Н                       |                                |
|                                           | Н  | н              | L              | н              | Х     | х                    | Х     | Х  | L                | L                  | L                | L                | Н                       |                                |
|                                           | Н  | н              | н              | L              | Х     | х                    | Х     | Х  | L                | L                  | L                | L                | Н                       |                                |
|                                           | Н  | н              | н              | н              | Х     | х                    | Х     | Х  | L                | L                  | L                | L                | Н                       |                                |
| = L if Q <sub>0</sub> -                   |    | LLL            |                |                |       |                      |       |    |                  |                    |                  |                  |                         |                                |
| if $Q_0 - Q_3 \neq$<br>= L if $Q_0 - C_3$ |    | чин            |                |                |       |                      |       |    |                  |                    |                  |                  |                         |                                |
| if Q <sub>0</sub> –Q <sub>3</sub> ≠       |    |                |                |                |       |                      |       |    |                  |                    |                  |                  |                         |                                |
| = HIGH Vo                                 |    |                | I              |                |       |                      |       |    |                  |                    |                  |                  |                         |                                |
| LOW Vol                                   |    | evel           |                |                |       |                      |       |    |                  |                    |                  |                  |                         |                                |
| = Don't Ca<br>= LOW-to                    |    | - Tra          | neitio         | 'n             |       |                      |       |    |                  |                    |                  |                  |                         |                                |
| ote 1: Befo                               |    |                |                |                |       |                      |       |    |                  |                    |                  |                  |                         |                                |

Note 1: Before the clock,  $\overline{\text{TC}}$  is  $\text{Q}_3$ 

After the clock,  $\overline{\text{TC}}$  is  $\text{Q}_2$ 



## Absolute Maximum Ratings(Note 2)

| Storage Temperature (T <sub>STG</sub> ) | -65°C to +150°C          |
|-----------------------------------------|--------------------------|
| Maximum Junction Temperature $(T_J)$    | +150°C                   |
| VEE Pin Potential to Ground Pin         | -7.0V to +0.5V           |
| Input Voltage (DC)                      | V <sub>EE</sub> to +0.5V |
| Output Current (DC Output HIGH)         | –50 mA                   |
| ESD (Note 3)                            | $\geq 2000V$             |
|                                         |                          |

## Recommended Operating Conditions

| Case Temperature (T <sub>C</sub> )                                                                                                 |                |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Commercial                                                                                                                         | 0°C to +85°C   |
| Industrial                                                                                                                         | -40°C to +85°C |
| Supply Voltage (V <sub>EE</sub> )                                                                                                  | -5.7V to -4.2V |
| Note 2: Absolute maximum ratings are th<br>device may be damaged or have its useful<br>tion under these conditions is not implied. |                |

Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

## **Commercial Version**

## DC Electrical Characteristics (Note 4)

| Symbol           | Parameter            | Min   | Тур   | Max   | Units | Conditions                             |                       |  |
|------------------|----------------------|-------|-------|-------|-------|----------------------------------------|-----------------------|--|
| V <sub>ОН</sub>  | Output HIGH Voltage  | -1025 | -955  | -870  | mV    | V <sub>IN</sub> =V <sub>IH (Max)</sub> | Loading with          |  |
| V <sub>OL</sub>  | Output LOW Voltage   | -1830 | -1705 | -1620 | mV    | or V <sub>IL (Min)</sub>               | $50\Omega$ to $-2.0V$ |  |
| V <sub>OHC</sub> | Output HIGH Voltage  | -1035 |       |       | mV    | $V_{IN} = V_{IH(Min)}$                 | Loading with          |  |
| V <sub>OLC</sub> | Output LOW Voltage   |       |       | -1610 | mV    | or V <sub>IL (Max)</sub>               | 50Ω to -2.0V          |  |
| V <sub>IH</sub>  | Input HIGH Voltage   | -1165 |       | -870  | mV    | Guaranteed HIGH Sig                    | Inal                  |  |
|                  |                      |       |       |       |       | for All Inputs                         |                       |  |
| V <sub>IL</sub>  | Input LOW Voltage    | -1830 |       | -1475 | mV    | Guaranteed LOW Sig                     | nal                   |  |
|                  |                      |       |       |       |       | for All Inputs                         |                       |  |
| IIL              | Input LOW Current    | 0.50  |       |       | μA    | $V_{IN} = V_{IL}$ (Min)                |                       |  |
| I <sub>IH</sub>  | Input HIGH Current   |       |       | 240   | μA    | $V_{IN} = V_{IH} (Max)$                |                       |  |
| I <sub>EE</sub>  | Power Supply Current | -165  |       | -80   |       | Inputs Open                            |                       |  |

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## Commercial Version (Continued) DIP AC Characteristics

| Symbol              | Parameter                             | $T_C = 0^{\circ}C$ |      | <b>T</b> <sub>C</sub> = - | +25°C | T <sub>C</sub> = - | +85°C | Units | Conditions        |
|---------------------|---------------------------------------|--------------------|------|---------------------------|-------|--------------------|-------|-------|-------------------|
| Symbol              |                                       | Min                | Max  | Min                       | Max   | Min                | Max   | Onita | Conditions        |
| fshift              | Shift Frequency                       | 300                |      | 300                       |       | 300                |       | MHz   | Figures 2, 3      |
| t <sub>PLH</sub>    | Propagation Delay                     | 1.00               | 2.00 | 1.00                      | 2.00  | 1.00               | 2.00  | ns    | Figures 1, 3      |
| t <sub>PHL</sub>    | CP to Q <sub>n</sub> , Q <sub>n</sub> | 1.00               | 2.00 | 1.00                      | 2.00  | 1.00               | 2.00  | 115   | (Note 5)          |
| t <sub>PLH</sub>    | Propagation Delay                     | 2.10               | 3.50 | 2.10                      | 3.50  | 2.10               | 3.70  | ns    | Figures 1, 7, 8   |
| t <sub>PHL</sub>    | CP to TC (Shift)                      | 2.10               | 3.50 | 2.10                      | 3.50  | 2.10               | 3.70  | 115   | (Note 5)          |
| t <sub>PLH</sub>    | Propagation Delay                     | 2.40               | 4.40 | 2.40                      | 4.40  | 2.60               | 4.70  | ns    | Figures 1, 9      |
| t <sub>PHL</sub>    | CP to TC (Count)                      | 2.40               | 4.40 | 2.40                      | 4.40  | 2.00               | 4.70  | 115   | (Note 5)          |
| t <sub>PLH</sub>    | Propagation Delay                     | 1.40               | 2.50 | 1.40                      | 2.50  | 1.50               | 2.60  | ns    | Figures 1, 4      |
| t <sub>PHL</sub>    | MR to Q <sub>n</sub> , Q <sub>n</sub> | 1.40               | 2.50 | 1.40                      | 2.50  | 1.50               | 2.00  | 115   | (Note 5)          |
| t <sub>PLH</sub>    | Propagation Delay                     | 2.80               | 5.10 | 2.90                      | 5.20  | 3.10               | 5.50  | ns    | Figures 1, 12     |
| t <sub>PHL</sub>    | MR to TC (Count)                      | 2.00               | 5.10 | 2.30                      | 5.20  | 5.10               | 5.50  | 115   | (Note 5)          |
| t <sub>PHL</sub>    | Propagation Delay                     | 2.40               | 4.00 | 2.40                      | 4.00  | 2.50               | 4.10  | ns    | Figures 1, 10, 11 |
|                     | MR to TC (Shift)                      | 2.40               | 4.00 | 2.40                      | 4.00  | 2.00               | 4.10  | 115   | (Note 5)          |
| t <sub>PLH</sub>    | Propagation Delay                     | 1.80               | 3.10 | 1.80                      | 3.10  | 1.90               | 3.30  | ns    | s                 |
| t <sub>PHL</sub>    | D <sub>0</sub> /CET to TC             | 1.00               | 5.10 | 1.00                      | 5.10  | 1.50               | 5.50  | 115   | Figures 1, 5      |
| t <sub>PLH</sub>    | Propagation Delay                     | 1.90               | 4.10 | 1.90                      | 4.10  | 2.10               | 4.40  | ns    | (Note 5)          |
| t <sub>PHL</sub>    | S <sub>n</sub> to TC                  | 1.50               | 4.10 | 1.50                      | 4.10  | 2.10               | 4.40  | 115   |                   |
| t <sub>TLH</sub>    | Transition Time                       | 0.35               | 1.20 | 0.35                      | 1.20  | 0.35               | 1.20  | ns    | Figures 1, 3      |
| t <sub>THL</sub>    | 20% to 80%, 80% to 20%                | 0.00               | 1.20 | 0.00                      | 1.20  | 0.00               | 1.20  | 113   | riguies 1, o      |
| ts                  | Setup Time                            |                    |      |                           |       |                    |       |       |                   |
|                     | D <sub>3</sub>                        | 1.00               |      | 1.00                      |       | 1.00               |       |       |                   |
|                     | Pn                                    | 1.50               |      | 1.50                      |       | 1.50               |       |       |                   |
|                     | D <sub>0</sub> /CET                   | 1.30               |      | 1.30                      |       | 1.30               |       | ns    | Figures 6, 4      |
|                     | CEP                                   | 1.40               |      | 1.40                      |       | 1.40               |       | 113   | 1 iguies 0, 4     |
|                     | S <sub>n</sub>                        | 3.40               |      | 3.40                      |       | 3.40               |       |       |                   |
|                     | MR (Release Time)                     | 2.60               |      | 2.60                      |       | 2.60               |       |       |                   |
| t <sub>H</sub>      | Hold Time                             |                    |      |                           |       |                    |       |       |                   |
|                     | D <sub>3</sub>                        | 0.40               |      | 0.40                      |       | 0.40               |       |       |                   |
|                     | Pn                                    | 0.30               |      | 0.30                      |       | 0.30               |       | ns    | Figure 6          |
|                     | D <sub>0</sub> /CET                   | 0.30               |      | 0.30                      |       | 0.30               |       | 115   | i igule o         |
|                     | CEP                                   | 0.20               |      | 0.20                      |       | 0.20               |       |       |                   |
|                     | S <sub>n</sub>                        | 0.10               |      | 0.10                      |       | 0.10               |       |       |                   |
| t <sub>PW</sub> (H) | Pulse Width HIGH                      | 2.00               |      | 2.00                      |       | 2.00               |       | ns    | Figures 3, 4      |
|                     | CP, MR                                | 2.00               |      | 2.00                      |       | 2.00               |       | 115   | 1 190105 0, 4     |

100336

## SOIC and PLCC AC Electrical Characteristics

| Symbol      | Parameter                               | T <sub>C</sub> = | = 0°C | T <sub>C</sub> = - | + <b>25°C</b> | T <sub>C</sub> = - | ⊦85°C | Units    | Conditions        |
|-------------|-----------------------------------------|------------------|-------|--------------------|---------------|--------------------|-------|----------|-------------------|
| Symbol      | Faiametei                               | Min              | Max   | Min                | Max           | Min                | Max   | Units    |                   |
| SHIFT       | Shift Frequency                         | 350              |       | 350                |               | 350                |       | MHz      | Figures 2, 3      |
| PLH         | Propagation Delay                       | 1.00             | 1.80  | 1.00               | 1.80          | 1.00               | 1.80  |          | Figures 1, 2      |
| PHL         | CP to Q <sub>n</sub> , Q <sub>n</sub>   | 1.00             | 1.60  | 1.00               | 1.60          | 1.00               | 1.60  | ns       | (Note 6)          |
| PLH         | Propagation Delay                       | 0.40             | 0.00  | 0.40               | 0.00          | 0.40               | 0.50  |          | Figures 1, 7, 8   |
| PHL         | CP to TC (Shift)                        | 2.10             | 3.30  | 2.10               | 3.30          | 2.10               | 3.50  | ns       | (Note 6)          |
| PLH         | Propagation Delay                       | 0.40             | 4.00  | 0.40               | 1.00          | 0.00               | 4.50  |          | Figures 1, 9      |
| PHL         | CP to TC (Count)                        | 2.40             | 4.20  | 2.40               | 4.20          | 2.60               | 4.50  | ns       | (Note 6)          |
| чLН         | Propagation Delay                       |                  |       |                    |               |                    |       |          | Figures 1, 4      |
| PHL         | MR to $Q_n, \overline{Q}_n$             | 1.40             | 2.30  | 1.40               | 2.30          | 1.50               | 2.40  | ns       | (Note 6)          |
| PLH         | Propagation Delay                       |                  |       |                    |               |                    |       |          | Figures 1, 12     |
| HL          | MR to TC (Count)                        | 2.80             | 4.90  | 2.90               | 5.00          | 3.10               | 5.30  | ns       | (Note 6)          |
| PHL         | Propagation Delay                       |                  |       |                    |               |                    |       |          | Figures 1, 10, 11 |
|             | MR to TC (Shift)                        | 2.40             | 3.80  | 2.40               | 3.80          | 2.50               | 3.90  | ns       | (Note 6)          |
| PLH         | Propagation Delay                       |                  |       |                    |               | <u> </u>           |       | <u> </u> |                   |
| PLH<br>PHL  | $D_0/\overline{CET}$ to $\overline{TC}$ | 1.80             | 2.90  | 1.80               | 2.90          | 1.90               | 3.10  | ns       | Figures 1, 5      |
| PHL         | Propagation Delay                       |                  |       |                    |               | <u> </u>           |       | <u> </u> | (Note 6)          |
| PLH<br>PHL  | $S_n$ to $\overline{TC}$                | 1.90             | 3.90  | 1.90               | 3.90          | 2.10               | 4.20  | ns       | (11010-0)         |
| TLH         | Transition Time                         |                  |       |                    |               |                    |       |          |                   |
| i lh<br>Thl | 20% to 80%, 80% to 20%                  | 0.35             | 1.10  | 0.35               | 1.10          | 0.35               | 1.10  | ns       | Figures 1, 3      |
|             | Setup Time                              |                  |       |                    |               |                    |       |          |                   |
| 5           | D <sub>3</sub>                          | 0.90             |       | 0.90               |               | 0.90               |       |          |                   |
|             | P <sub>n</sub>                          | 1.40             |       | 1.40               |               | 1.40               |       |          |                   |
|             | D <sub>0</sub> /CET                     | 1.40             |       | 1.40               |               | 1.40               |       |          |                   |
|             |                                         | 1.20             |       | 1.20               |               | 1.20               |       | ns       | Figures 4, 6      |
|             | -                                       | 3.30             |       |                    |               | 3.30               |       |          |                   |
|             | S <sub>n</sub>                          |                  |       | 3.30               |               |                    |       |          |                   |
|             | MR (Release Time)                       | 2.50             |       | 2.50               |               | 2.50               |       |          |                   |
|             | Hold Time                               | 0.00             |       | 0.00               |               | 0.00               |       |          |                   |
|             | D <sub>3</sub>                          | 0.30             |       | 0.30               |               | 0.30               |       |          |                   |
|             | P <sub>n</sub>                          | 0.20             |       | 0.20               |               | 0.20               |       |          | Figure 6          |
|             |                                         | 0.20             |       | 0.20               |               | 0.20               |       | ns       |                   |
|             | CEP                                     | 0.10             |       | 0.10               |               | 0.10               |       |          | 1                 |
| 4.15        | S <sub>n</sub>                          | 0.00             |       | 0.00               |               | 0.00               |       |          |                   |
| w(H)        | Pulse Width HIGH                        | 2.00             |       | 2.00               |               | 2.00               |       | ns       | Figures 3, 4      |
|             | CP, MR                                  |                  |       |                    |               |                    |       |          | DLCC Orti         |
| SHL         | Maximum Skew Common Edge                |                  |       |                    |               |                    |       |          | PLCC Only         |
|             | Output-to-Output Variation              |                  | 200   |                    | 200           |                    | 200   | ps       | (Note 7)          |
|             | Clock to Output Path                    |                  |       |                    |               |                    |       |          |                   |
| SLH         | Maximum Skew Common Edge                |                  |       |                    |               |                    |       |          | PLCC Only         |
|             | Output-to-Output Variation              |                  | 200   |                    | 200           |                    | 200   | ps       | (Note 7)          |
|             | Clock to Output Path                    |                  |       |                    |               | ļ                  |       | L        |                   |
| DST         | Maximum Skew Opposite Edge              |                  |       |                    |               |                    |       |          | PLCC Only         |
|             | Output-to-Output Variation              |                  | 230   |                    | 230           |                    | 230   | ps       | (Note 7)          |
|             | Clock to Output Path                    |                  |       |                    |               |                    |       |          | <u> </u>          |
| S           | Maximum Skew                            |                  |       |                    |               |                    |       |          | PLCC Only         |
|             | Pin (Signal) Transition Variation       |                  | 245   |                    | 245           |                    | 245   | ps       | (Note 7)          |
|             | Clock to Output Path                    |                  |       |                    |               |                    |       |          |                   |

Note 6: The propagation delay specified is for single output switching. Delays may vary up to 250 ps with multiple outputs switching.

Note 7: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW ( $t_{OSHL}$ ), or LOW-to-HIGH ( $t_{OSLH}$ ), or in opposite directions both HL and LH ( $t_{OST}$ ). Parameters  $t_{OST}$  and  $t_{ps}$  guaranteed by design

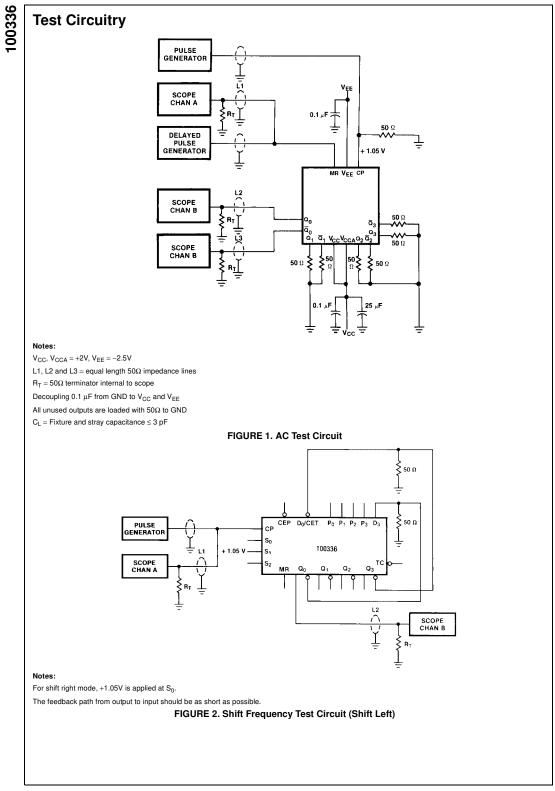
### **Industrial Version**

## PLCC DC Electrical Characteristics (Note 8)

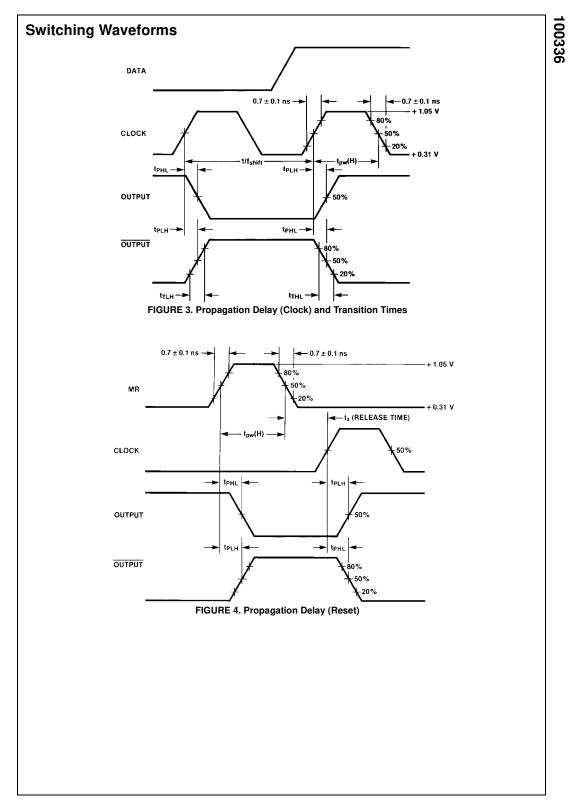
 $V_{EE} = -4.2V$  to -5.7V,  $V_{CC} = V_{CCA} = GND$ ,  $T_{C} = -40^{\circ}C$  to  $+85^{\circ}C$ 

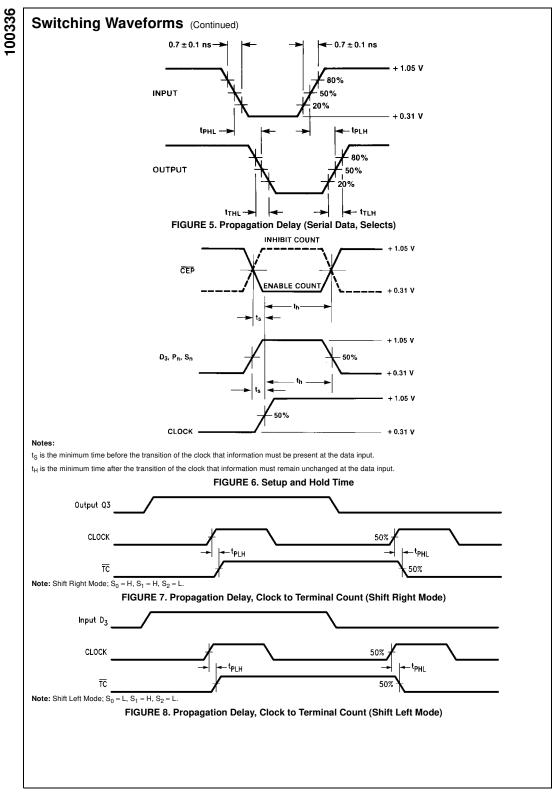
| Symbol           | Parameter            | T <sub>C</sub> = - | -40°C | $T_C = 0^{\circ}C$ | to +85°C | Units | Conditions                             |                      |  |
|------------------|----------------------|--------------------|-------|--------------------|----------|-------|----------------------------------------|----------------------|--|
| Symbol           | i arameter           | Min                | Max   | Min                | Max      | onita |                                        |                      |  |
| V <sub>OH</sub>  | Output HIGH Voltage  | -1085              | -870  | -1025              | -870     | mV    | V <sub>IN</sub> =V <sub>IH (Max)</sub> | Loading with         |  |
| V <sub>OL</sub>  | Output LOW Voltage   | -1830              | -1575 | -1830              | -1620    | mV    | or V <sub>IL (Min)</sub>               | 50 $\Omega$ to –2.0V |  |
| V <sub>OHC</sub> | Output HIGH Voltage  | -1095              |       | -1035              |          | mV    | $V_{IN} = V_{IH(Min)}$                 | Loading with         |  |
| V <sub>OLC</sub> | Output LOW Voltage   |                    | -1565 |                    | -1610    | mV    | or V <sub>IL (Max)</sub>               | 50 $\Omega$ to –2.0V |  |
| V <sub>IH</sub>  | Input HIGH Voltage   | -1170              | -870  | -1165              | -870     | mV    | Guaranteed HIGH Signal                 | for All Inputs       |  |
| V <sub>IL</sub>  | Input LOW Voltage    | -1830              | -1480 | -1830              | -1475    | mV    | Guaranteed LOW Signal                  | for All Inputs       |  |
| Ι <sub>IL</sub>  | Input LOW Current    | 0.50               |       | 0.50               |          | μA    | $V_{IN} = V_{IL}$ (Min)                |                      |  |
| I <sub>IH</sub>  | Input HIGH Current   |                    | 240   |                    | 240      | μA    | $V_{IN} = V_{IH}$ (Max)                |                      |  |
| I <sub>EE</sub>  | Power Supply Current | -165               | -75   | -165               | -80      | mA    | Inputs Open                            |                      |  |

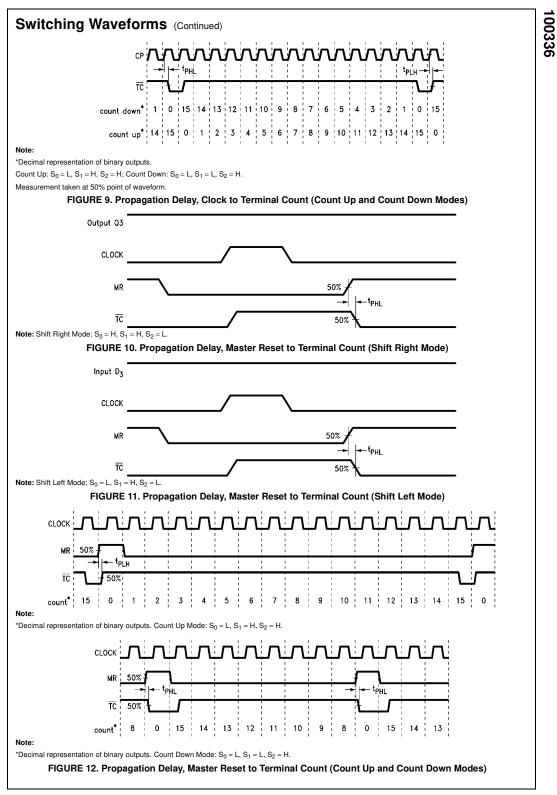
Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

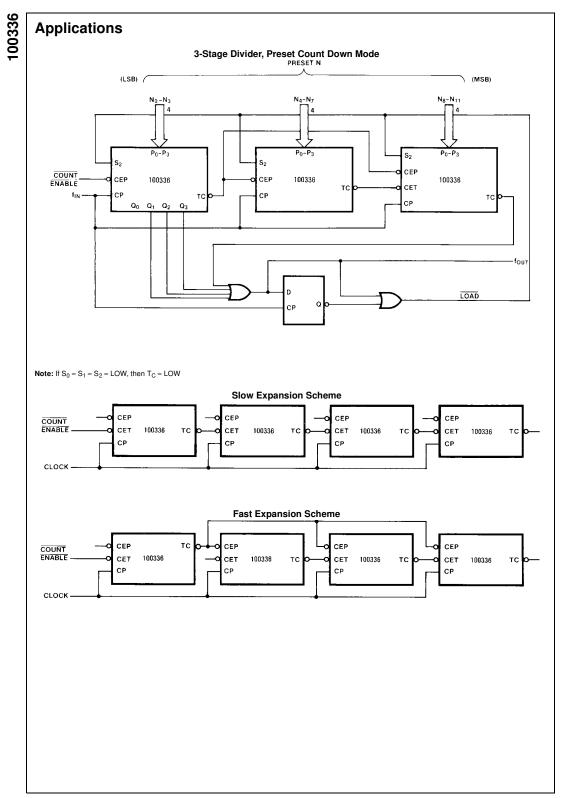

## **PLCC AC Electrical Characteristics**

 $V_{EE} = -4.2V$  to -5.7V,  $V_{CC} = V_{CCA} = GND$ 

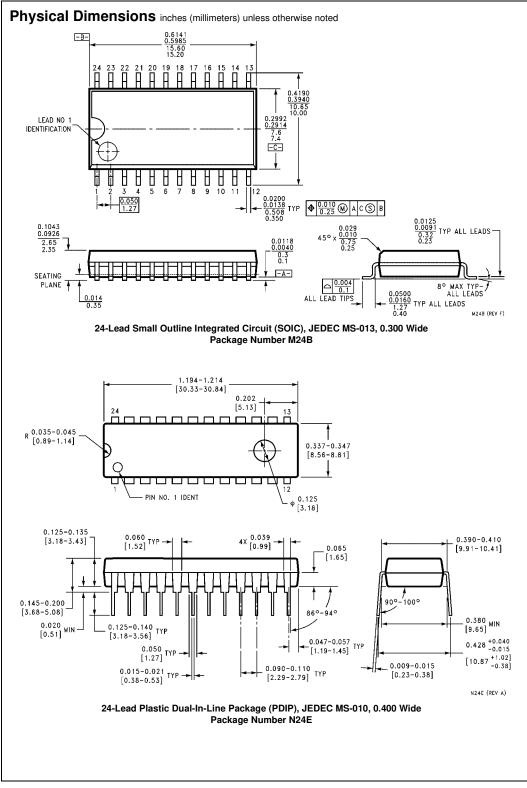

| Symbol              | Parameter                   | T <sub>C</sub> = - | –40°C | T <sub>C</sub> = - | +25°C | T <sub>C</sub> = - | +85°C | Units | Conditions        |
|---------------------|-----------------------------|--------------------|-------|--------------------|-------|--------------------|-------|-------|-------------------|
| Symbol              | i didilicitei               | Min                | Max   | Min                | Max   | Min                | Max   | Units | Conditions        |
| fshift              | Shift Frequency             | 325                |       | 350                |       | 350                |       | MHz   | Figures 2, 3      |
| t <sub>PLH</sub>    | Propagation Delay           | 1.00               | 1.80  | 1.00               | 1.00  | 1.00               | 1.80  |       | Figures 1, 3      |
| t <sub>PHL</sub>    | CP to $Q_n, \overline{Q}_n$ | 1.00               | 1.60  | 1.00               | 1.80  | 1.00               | 1.60  | ns    | (Note 9)          |
| t <sub>PLH</sub>    | Propagation Delay           | 2.00               | 3.30  | 2.10               | 3.30  | 2.10               | 3.50  | 20    | Figures 1, 7, 8   |
| t <sub>PHL</sub>    | CP to TC (Shift)            | 2.00               | 3.30  | 2.10               | 3.30  | 2.10               | 3.50  | ns    | (Note 9)          |
| t <sub>PLH</sub>    | Propagation Delay           | 2.40               | 4.20  | 2.40               | 4.20  | 2.60               | 4.50  |       | Figures 1, 9      |
| t <sub>PHL</sub>    | CP to TC (Count)            | 2.40               | 4.20  | 2.40               | 4.20  | 2.60               | 4.50  | ns    | (Note 9)          |
| t <sub>PLH</sub>    | Propagation Delay           | 1.40               | 2.30  | 1.40               | 2.30  | 1.50               | 2.40  |       | Figures 1, 4      |
| t <sub>PHL</sub>    | MR to $Q_n, \overline{Q}_n$ | 1.40               | 2.30  | 1.40               | 2.30  | 1.50               | 2.40  | ns    | (Note 9)          |
| t <sub>PLH</sub>    | Propagation Delay           | 2.80               | 4.90  | 2.90               | 5.00  | 3.10               | 5.30  |       | Figures 1, 12     |
| t <sub>PHL</sub>    | MR to TC (Count)            | 2.00               | 4.90  | 2.90               | 5.00  | 3.10               | 5.50  | ns    | (Note 9)          |
| t <sub>PHL</sub>    | Propagation Delay           | 2.40               | 3.80  | 2.40               | 3.80  | 2.50               | 3.90  | 20    | Figures 1, 10, 11 |
|                     | MR to TC (Shift)            | 2.40               | 3.60  | 2.40               | 3.60  | 2.50               | 3.90  | ns    | (Note 9)          |
| t <sub>PLH</sub>    | Propagation Delay           | 1.70               | 2.90  | 1.80               | 2.90  | 1.90               | 3.10  | 20    |                   |
| t <sub>PHL</sub>    | D <sub>0</sub> /CET to TC   | 1.70               | 2.90  | 1.60               | 2.90  | 1.90               | 3.10  | ns    | Figures 1, 5      |
| t <sub>PLH</sub>    | Propagation Delay           | 1.80               | 3.90  | 1.90               | 3.90  | 2.10               | 4.20  | 20    | (Note 9)          |
| t <sub>PHL</sub>    | S <sub>n</sub> to TC        | 1.60               | 3.90  | 1.90               | 3.90  | 2.10               | 4.20  | ns    |                   |
| t <sub>TLH</sub>    | Transition Time             | 0.00               | 1.90  | 0.05               | 1 10  | 0.05               | 1 10  |       | Figures 1, 3      |
| t <sub>THL</sub>    | 20% to 80%, 80% to 20%      | 0.20               | 1.90  | 0.35               | 1.10  | 0.35               | 1.10  | ns    | Figures 1, 3      |
| t <sub>S</sub>      | Setup Time                  |                    |       |                    |       |                    |       |       |                   |
|                     | D <sub>3</sub>              | 1.40               |       | 0.90               |       | 0.90               |       |       |                   |
|                     | Pn                          | 1.70               |       | 1.40               |       | 1.40               |       |       |                   |
|                     | D <sub>0</sub> /CET         | 1.80               |       | 1.20               |       | 1.20               |       | ns    | Figure 6          |
|                     | CEP                         | 1.80               |       | 1.30               |       | 1.30               |       | 115   | Figure 6          |
|                     | S <sub>n</sub>              | 3.30               |       | 3.30               |       | 3.30               |       |       |                   |
|                     | MR (Release Time)           | 2.60               |       | 2.50               |       | 2.50               |       |       |                   |
| t <sub>H</sub>      | Hold Time                   |                    |       |                    |       |                    |       |       |                   |
|                     | D <sub>3</sub>              | 0.90               |       | 0.30               |       | 0.30               |       |       |                   |
|                     | P <sub>n</sub>              | 1.00               |       | 0.20               |       | 0.20               |       |       |                   |
|                     | D <sub>0</sub> /CET         | 0.70               |       | 0.20               |       | 0.20               |       | ns    | Figure 6          |
|                     | CEP                         | 0.60               |       | 0.10               |       | 0.10               |       |       |                   |
|                     | S <sub>n</sub>              | 0.00               |       | 0.00               |       | 0.00               |       |       |                   |
| t <sub>PW</sub> (H) | Pulse Width HIGH CP, MR     | 2.20               |       | 2.00               |       | 2.00               |       | ns    | Figures 3, 4      |

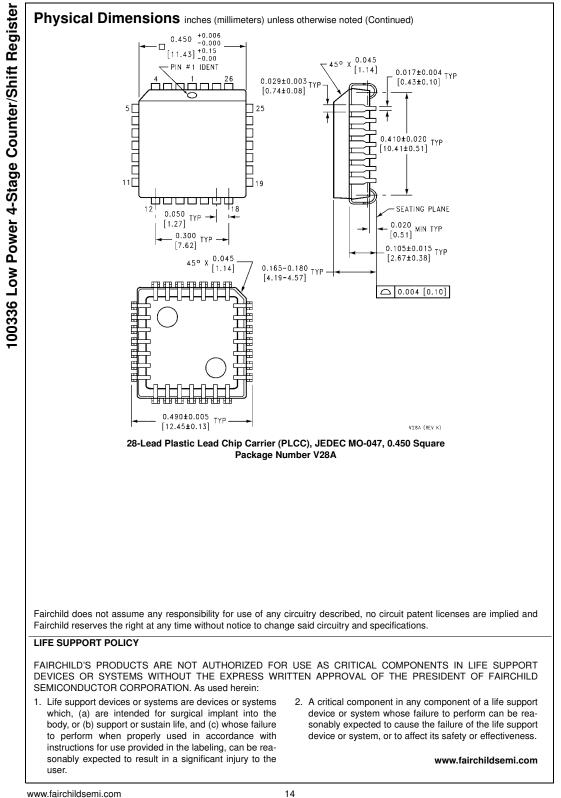

www.fairchildsemi.com


100336




8








12



