imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

July 1988 Revised August 2000

100351 Low Power Hex D-Type Flip-Flop

FAIRCHILD

SEMICONDUCTOR

100351 Low Power Hex D-Type Flip-Flop

General Description

The 100351 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_a and CP_b) and common Master Reset (MR) input. Data enters a master when both CP_a and CP_b are LOW and transfers to the slave when CP_a and CP_b (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 k Ω pull-down resistors.

Features

- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100351SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100351PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100351QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100351QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C)

Devises also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

100351

Truth Tables (Each Flip-flop)

Synchronous Operation

	Inp	uts		Outputs
D _n	CPa	CPb	MR	Q _n (t+1)
L	~	L	L	L
Н	~	L	L	Н
L	L	~	L	L
Н	L	~	L	н
Х	Н	~	L	Q _n (t)
Х	~	Н	L	Q _n (t)
Х	L	L	L	Q _n (t)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

t = Time before CP positive transition

t+1 = Time after CP positive transition

✓ = LOW-to-HIGH transition

Logic Diagram

www.fairchildsemi.com

Asynchronous Operation

	Inputs							
D _n	CPa	Q _n (t+1)						
Х	Х	Х	Н	L				

Absolute Maximum Ratings(Note 1)

 $\begin{array}{l} \mbox{Storage Temperature} (T_{STG}) \\ \mbox{Maximum Junction Temperature} (T_J) \\ \mbox{V}_{EE} \mbox{Pin Potential to Ground Pin} \\ \mbox{Input Voltage} (DC) \\ \mbox{Output Current} (DC \mbox{Output HIGH}) \\ \mbox{ESD} (Note 2) \\ \end{array}$

 $\begin{array}{l} -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to } +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to } +0.5\text{V} \\ -50 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (V _{EE})	-5.7V to -4.2V

00351

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$v_{EE}=-4.2V$ to $-5.7V,~V_{CC}=V_{CCA}=GND,~T_{C}$ = 0°C to +85°C Symbol Parameter Conditions Min Max Units Тур Output HIGH Voltage -1025 -955 -870 Vон VIN =VIH (Max) Loading with mV Output LOW Voltage -1830 -1705 -1620 or V_{IL} (Min) 50Ω to -2.0V V_{OL} VOHC Output HIGH Voltage -1035 $V_{IN} = V_{IH}$ (Min) Loading with mV VOLC Output LOW Voltage -1610 or V_{IL} (Max) 50Ω to -2.0V-1165 Guaranteed HIGH Signal for All Inputs Input HIGH Voltage -870 mV VIH $\overline{v_{\text{IL}}}$ Input LOW Voltage -1830 -1475 Guaranteed LOW Signal for All Inputs mV Input LOW Current 0.50 $V_{IN} = V_{IL}$ (Min) μA Ιıı $I_{\rm H}$ Input HIGH Current MF 350 D₀-D₅ 240 μA $V_{IN} = V_{IH} (Max)$ 350 CP_a, CP_b Power Supply Current -129 -62 mΑ Inputs OPEN IFF

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

Symbol	Parameter	T _C =	$T_C = 0^\circ C$		$T_C = +25^{\circ}C$		T _C = +85°C		Conditions	
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions	
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3	
t _{PLH}	Propagation Delay	0.80	2.00	0.80	2.0	0.90	2.10	ns	Figures 1, 3	
t _{PHL}	CP _a , CP _b to Output	0.80	2.00	2.00 0.80	0.00	2.0	0.90	2.10	115	Figures 1, 5
t _{PLH}	Propagation Delay	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1, 4	
t _{PHL}	MR to Output	1.10	2.50		2.50	1.20	2.40	115	riguies i, i	
t _{TLH}	Transition Time	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 3	
t _{THL}	20% to 80%, 80% to 20%	0.55	1.20	0.33	1.20	0.55	1.20	115	rigules 1, 5	
t _S	Setup Time									
	D ₀ -D ₅	0.40		0.40		0.40		ns	Figure 5	
	MR (Release Time)	1.60		1.60		1.60			Figure 4	
t _H	Hold Time	0.80		0.80		0.80		ns	Figure 5	
	D ₀ -D ₅	0.80		0.00		0.00		115	Figure 5	
t _{PW} (H)	Pulse Width HIGH	0.00		0.00		0.00				
	CP _a , CP _b , MR	2.00		2.00		2.00		ns	Figures 3, 4	

100351

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

$V_{FF} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C = -	+ 25°C	$T_{C} = +85^{\circ}C$		Units	Condition
Symbol	i urunotor	Min	Max	Min	Max	Min	Max	onita	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.90	1.90	20	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output	0.00	0.00 1.00	0.00	1.00	0.90	1.90	ns	Figures 1, 3
t _{PLH}	Propagation Delay	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
t _{PHL}	MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	115	rigures 1, 4
t _{TLH}	Transition Time	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.00	0.45	1.70	115	Figures 1, 5
ts	Setup Time								
	D ₀ -D ₅	0.30		0.30		0.30		ns	Figure 5
	MR (Release Time)	1.50		1.50		1.50			Figure 4
t _H	Hold Time	0.80		0.80		0.80			Figure F
	D ₀ -D ₅	0.80		0.80		0.80		ns	Figure 5
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4
	CP _a , CP _b , MR	2.00		2.00		2.00		115	rigures 5, 4
t _{OSHL}	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		220		220		220	ps	(Note 4)
	Clock to Output Path								
t _{OSLH}	Maximum Skew Common Edge	1							PLCC only
	Output-to-Output Variation		210		210		210	ps	(Note 4)
	Clock to Output Path								
t _{OST}	Maximum Skew Opposite Edge								PLCC only
	Output-to-Output Variation		240		240		240	ps	(Note 4)
	Clock to Output Path								
t _{PS}	Maximum Skew								PLCC only
	Pin (Signal) Transition Variation		230		230		230	ps	(Note 4)
	Clock to Output Path								

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same pack-aged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toSHL), or LOW-to-HIGH (toSLH), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

PLCC DC Electrical Characteristics

v_{EE} =-4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C (Note 5)

Symbol	Parameter	T _C = -	–40°C	T _C = 0 ° 1	to +85°C	Units	Conditions		
Symbol	i alameter	Min	Max	Min	Max	onita	Condit	10113	
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	111 V	or V _{IL} (Min)	50 Ω to –2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH}$ (Min)	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	IIIV	or V _{IL} (Max)	50 Ω to –2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
							for All Inputs		
VIL	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal		
							for All Inputs		
IIL	Input LOW Current	0.50		0.50		μA	$V_{IN} = V_{IL}$ (Min)		
IIH	Input HIGH Current								
	MR		350		350				
	D ₀ -D ₅		240		240	μA	V _{IN} = V _{IH} (Max)		
	CP _a , CP _b		350		350				
I _{EE}	Power Supply Current	-129	-62	-129	-62	mA	Inputs OPEN		

Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = -	–40°C	T _C =	+25°C	$T_C = +85^{\circ}C$		Units	Conditions
Symbol	Falameter	Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1.00	0.00	1.00	0.00	1.00		Figures 1. 0
t _{PHL}	CP _a , CP _b to Output	0.80	0 1.80	1.80 0.80	1.80	0.90	1.90	ns	Figures 1, 3
t _{PLH}	Propagation Delay	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
t _{PHL}	MR to Output	1.10	2.10	1.10	2.10	1.20	2.20	115	Figures 1, 4
t _{TLH}	Transition Time	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%	0.45	1.70	0.45	1.00	0.45	1.70	115	Figures 1, 5
ts	Setup Time								
	D ₀ -D ₅	0.60		0.30		0.30		ns	Figure 5
	MR (Release Time)	2.20		1.50		1.50			Figure 4
t _H	Hold Time	0.60		0.90		0.90			Figure 5
	D ₀ -D ₅	0.60		0.90		0.90		ns	Figure 5
t _{PW} (H)	Pulse Width HIGH	2.00		2.00		2.00			Eiguroo 2 4
	CP _a , CP _b , MR	2.00		2.00		2.00		ns	Figures 3, 4

8

