## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China



Absolute Maximum Ratings(Note 1)

Storage Temperature ( $\mathrm{T}_{\mathrm{STG}}$ )
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$\mathrm{V}_{\mathrm{EE}}$ to +0.5 V
$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$

## Recommended Operating Conditions

| Case Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Commercial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Industrial | -5.7 V to -4.2 V |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

## Commercial Version

DC Electrical Characteristics (Note 3)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -870 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1035 |  |  | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$ | Loading with |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  | or $\mathrm{V}_{\text {IL }}$ (Max) | $50 \Omega$ to -2.0V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\mathrm{I}_{\text {IL }}$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ ( Min ) |  |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current $\begin{array}{r} \mathrm{MR} \\ \mathrm{D}_{0}-\mathrm{D}_{5} \\ C P_{\mathrm{a}}, C P_{\mathrm{b}} \end{array}$ |  |  | $\begin{aligned} & 350 \\ & 240 \\ & 350 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |  |
| $\mathrm{I}_{\text {EE }}$ | Power Supply Current | -129 |  | -62 | mA | Inputs OPEN |  |

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {MAX }}$ | Toggle Frequency | 375 |  | 375 |  | 375 |  | MHz | Figures 2, 3 |
| $\begin{array}{\|l\|} \hline \mathrm{t}_{\text {PLH }} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$ | Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output | 0.80 | 2.00 | 0.80 | 2.0 | 0.90 | 2.10 | ns | Figures 1, 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$ | Propagation Delay <br> MR to Output | 1.10 | 2.30 | 1.10 | 2.30 | 1.20 | 2.40 | ns | Figures 1, 4 |
| $\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{TLH}} \\ \mathrm{t}_{\mathrm{TH} \mathrm{~L}} \end{array}$ | $\begin{array}{\|l\|} \hline \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{array}$ | 0.35 | 1.20 | 0.35 | 1.20 | 0.35 | 1.20 | ns | Figures 1, 3 |
| $\mathrm{ts}_{s}$ | Setup Time $D_{0}-D_{5}$ MR (Release Time) | $\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$ |  | $\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$ |  | $\begin{aligned} & 0.40 \\ & 1.60 \end{aligned}$ |  | ns | Figure 5 <br> Figure 4 |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time $D_{0}-D_{5}$ | 0.80 |  | 0.80 |  | 0.80 |  | ns | Figure 5 |
| $\overline{t_{\text {PW }}(\mathrm{H})}$ | $\begin{aligned} & \hline \text { Pulse Width HIGH } \\ & \mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR} \end{aligned}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3, 4 |

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ${ }_{\text {f MAX }}$ | Toggle Frequency | 375 |  | 375 |  | 375 |  | MHz | Figures 2, 3 |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output | 0.80 | 1.80 | 0.80 | 1.80 | 0.90 | 1.90 | ns | Figures 1, 3 |
| tPLH <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay MR to Output | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | ns | Figures 1, 4 |
| $\begin{aligned} & \overline{\mathrm{t}_{\mathrm{TLH}}} \\ & \mathrm{t}_{\mathrm{T} H L} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.70 | ns | Figures 1, 3 |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time $D_{0}-D_{5}$ <br> MR (Release Time) | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ |  | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ |  | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ |  | ns | Figure 5 <br> Figure 4 |
| $\mathrm{t}_{\mathrm{H}}$ | $\begin{aligned} & \hline \text { Hold Time } \\ & D_{0}-D_{5} \\ & \hline \end{aligned}$ | 0.80 |  | 0.80 |  | 0.80 |  | ns | Figure 5 |
| $\overline{t_{\text {PW }}(\mathrm{H})}$ | Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3, 4 |
| $\mathrm{t}_{\text {OSHL }}$ | Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path |  | 220 |  | 220 |  | 220 | ps | PLCC only (Note 4) |
| ${ }_{\text {tosLH }}$ | Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path |  | 210 |  | 210 |  | 210 | ps | PLCC only (Note 4) |
| $\mathrm{t}_{\text {OST }}$ | Maximum Skew Opposite Edge <br> Output-to-Output Variation <br> Clock to Output Path |  | 240 |  | 240 |  | 240 | ps | PLCC only (Note 4) |
| $\overline{t_{P S}}$ | Maximum Skew <br> Pin (Signal) Transition Variation <br> Clock to Output Path |  | 230 |  | 230 |  | 230 | ps | PLCC only <br> (Note 4) |

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toshl), or LOW-to-HIGH (tosLh), or in opposite directions both HL and LH ( $\mathrm{t}_{\mathrm{OST}}$ ). Parameters $\mathrm{t}_{\mathrm{OST}}$ and $\mathrm{t}_{\mathrm{PS}}$ guaranteed by design.

| Industrial Version |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLCC DC Electrical Characteristics |  |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 5) |  |  |  |  |  |  |  |  |
| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=0^{\circ}$ to $+85^{\circ} \mathrm{C}$ |  | Units | Conditions |  |
|  |  | Min | Max | Min | Max |  |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1085 | -870 | -1025 | -870 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Min}) \\ & \hline \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 | -1575 | -1830 | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1095 |  | -1035 |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$ | $\begin{aligned} & \text { Loading with } \\ & 50 \Omega \text { to }-2.0 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  | -1565 |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1170 | -870 | -1165 | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\overline{\mathrm{V} \text { IL }}$ | Input LOW Voltage | -1830 | -1480 | -1830 | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\bar{I}_{\text {IL }}$ | Input LOW Current | 0.50 |  | 0.50 |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |
| IIH | Input HIGH Current |  |  |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |  |
|  | MR |  | 350 |  | 350 |  |  |  |  |
|  | $\mathrm{D}_{0}-\mathrm{D}_{5}$ |  | 240 |  | 240 |  |  |  |  |
|  |  |  | 350 |  |  |  |  |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -129 | -62 | -129 | -62 | mA | Inputs OPEN |  |

. sen to guarantee operation under "worst case" conditions.

## PLCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {MAX }}$ | Toggle Frequency | 375 |  | 375 |  | 375 |  | MHz | Figures 2, 3 |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output | 0.80 | 1.80 | 0.80 | 1.80 | 0.90 | 1.90 | ns | Figures 1, 3 |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay MR to Output | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | ns | Figures 1, 4 |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.70 | ns | Figures 1, 3 |
| $\mathrm{t}_{\mathrm{s}}$ | $\begin{aligned} & \hline \text { Setup Time } \\ & D_{0}-D_{5} \\ & \text { MR (Release Time) } \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$ |  | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ |  | $\begin{aligned} & 0.30 \\ & 1.50 \end{aligned}$ |  | ns | Figure 5 <br> Figure 4 |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time $D_{0}-D_{5}$ | 0.60 |  | 0.90 |  | 0.90 |  | ns | Figure 5 |
| $\mathrm{t}_{\text {PW }}(\mathrm{H})$ | Pulse Width HIGH $C P_{\mathrm{a}}, C P_{\mathrm{b}}, \mathrm{MR}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3, 4 |



Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit


Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length $50 \Omega$ impedance lines
$R_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Jig and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 2. Toggle Frequency Test Circuit



Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
