

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ATC 100 B Series Porcelain Superchip® Multilayer Capacitors

- Case B Size
 - (.110" x .110") 0.1 pF to 1000 pF
- High Q
- Ultra-Stable Performance
- Low ESR/ESL
- High Self-Resonance

Capacitance Range

- Low Noise
- Established Reliability (QPL)
- Extended WVDC up to 1500 VDC

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and DC Blocking.

Typical circuit applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

ENVIRONMENTAL TESTS

ATC 100 B Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK: MIL-STD-202. Method 107. Condition A.

MOISTURE RESISTANCE: MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for

240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage Applied:

200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

ELECTRICAL AND MECHANICAL **SPECIFICATIONS**

QUALITY FACTOR (Q): greater than 10,000 at 1 MHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)

INSULATION RESISTANCE (IR):

0.1 pF to 470 pF:

106 Megohms min. @ +25°C at rated WVDC. 105 Megohms min. @ +125°C at rated WVDC.

510 pF to 1000 pF:

10⁵ Megohms min. @ +25°C at rated WVDC.

104 Megohms min. @ +125°C at rated WVDC.

IR above +125°C is derated by one order of magnitude.

WORKING VOLTAGE (WVDC): See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.

OPERATING TEMPERATURE RANGE:

0.1 to 330 pF: from -55°C to +175°C 360 to 1000 pF: from -55°C to +125°C

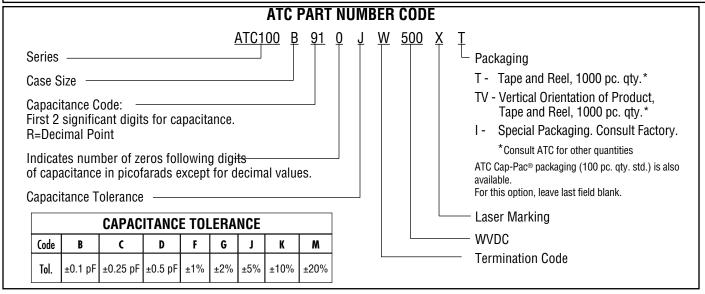
TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

TECHNICAL

ATC Europe saleseur@atceramics.com CERAMICS


ATC Asia CHOICE® sales@atceramics-asia.com

ATC 100 B Capacitance Values

CAP.	CAP.	TOL.	RATED STD.		CAP.	CAP.	TOL.	RATED STD.	WVDC		CAP.	TOL.	RATED STD.	WVDC		CAP.	TOL.	RATED STD.	WVDC Ext.
CODE	(pF)		טוט.	EXT.	CODE	(pF)		91D.	EXT.	CODE	(pF)		31 υ.	EXT.	CODE	(pF)		SID.	EXI.
0R1 0R2	0.1	В			2R4 2R7	2.4 2.7				200 220	20 22				151 161	150 160			17
0R3	0.2		-	3E	3R0	3.0			3E	240	24				181	180		300	1701
0R4	0.3	B, C		TAI	3R3	3.3			TAC	270	27				201	200			1000
0R5	0.4		- 1	VOLTAGE	3R6	3.6			VOLTAGE	300	30				221	220			EXT
0R6	0.5				3R9	3.9	B, C,			330	33				241	240			I
0R7	0.0			EXTENDED	4R3	4.3	D, O,		EXTENDED	360	36			3E	271	270			
0R8	0.7			rEN	4R7	4.7			EN	390	39			VOLTAGE	301	300			170/
0R9	0.9			EX	5R1	5.1			EXI	430	43			70/	331	330		200	2/2
1R0	1.0				5R6	5.6				470	47		500	1500	361	360		200	600
1R1	1.1				6R2	6.2				510	51				391	390			EXT
1R2	1.2	В, С,	500	1500	6R8	6.8		500	1500	560	56	F, G, J,		EXTENDED	431	430	F, G, J,		
1R3	1.3	D		1000	7R5		B, C, J,	1	1000	620	62	K, M		EN	471	470	K, M		
1R4	1.4			Ē	8R2	8.2	K, M		Ē	680	68			EXI	511	510			
1R5	1.5			AG	9R1	9.1	,		AG	750	75				561	560		400	
1R6	1.6			VOLTAGE	100	10			VOLTAGE	820	82				621	620		100	_
1R7	1.7			N	110	11			N	910	91				681	680			170/
1R8	1.8			ED	120	12			ED	101	100				751	750			300
1R9	1.9			ENE	130		F, G, J,		END	111	110				821	820		50	
2R0	2.0			EXTENDED	150	15	K, M		EXTENDED	121	120		300		911	910			EXT
2R1	2.1			E	160	16	, ,		E	131	130			1000	102	1000			
2R2	2.2				180	18													

VRMS = 0.707 X WVDC
• SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.

NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com

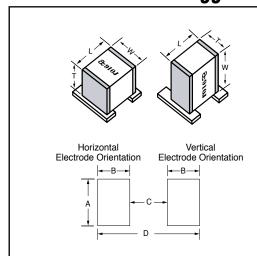
ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

ATC 100 B Capacitors: Mechanical Configurations

ATC SERIES	ATC	MIL-PRF-	CASE SIZE	OUTLINES		DY DIMENSIO INCHES (mm)			D AND TEI		
& CASE SIZE	TERM. CODE	55681	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	N	MATERIAL	s
100B	W	CDR14BG	B Solder Plate.1	Y→ ← ↓ <u>w</u> → L ← [↑] → T ←	.110 +.020010 (2.79 +0.51 -0.25)	110 ±.015 (2.79 ±0.38)			TIn/Lead, Solder Plated over Nickel Barrier Termination10		
100B	Р	CDR14BG	B Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{W} & \underline{W} \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow & \uparrow & \downarrow & \uparrow \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, over Nickel Barrier Termination		
100B	Т	N/A	B Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{w} & \underline{w} \\ \to & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	max.		Rof Tir	4S Compliant In Plated over Plarrier Termination	
100B	CA	CDR13BG	B Gold Chip	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{W} & \underline{W} \\ \to & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \end{array}$.110 ±.0. 15 020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination		
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid \ ^{\downarrow} \downarrow \mid \leftarrow & \downarrow & \rightarrow \mid \leftarrow \\ \underline{w_{L}} & & \boxed{\qquad} \downarrow & \boxed{\qquad} \downarrow & \boxed{\qquad} \downarrow \leftarrow \\ \uparrow & \rightarrow \mid \ _{L} \mid \leftarrow & & \uparrow \rightarrow \mid \ _{T} \mid \leftarrow \\ \end{array}$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)
100B	AR	CDR22BG	B Axial Ribbon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.135 ±.015 (3.43 ±0.38)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	N/A	.250 (6.35) min.	.093 ±.005 (2.36 ±0.13)	.004 ±.001 (.102 ±.025)
100B	RR	CDR24BG	B Radial Ribbon	$ \begin{array}{c c} \downarrow & \rightarrow \mid \iota_{L} \mid \leftarrow \downarrow \\ \hline \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \uparrow \downarrow \mid \uparrow \mid \leftarrow \downarrow \uparrow \\ \end{array} \qquad \psi_{L} $							
100B	RW	CDR23BG	B Radial Wire	→ L ← → W ←	.145 ±.020		max.		.500 (12.7)in.	#26 <i>F</i> .016 (.4	
100B	AW	CDR25BG	B Axial Wire	→ L ← W → T ←	(3.68 ±0.51)				min.		ninal

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant. For a complete military catalog, request American Technical Ceramics document ATC 001-818.


AMERICAN TECHNICAL CERAMICS

ATC 100 B Non-Magnetic Capacitors: Mechanical Configurations

				<u> </u>				<u> </u>					
ATC SERIES	ATC Term.	MIL-PRF-	CASE SIZE	OUTLINES		DY DIMENSIO INCHES (mm)	LEAD AND TERMINATION DIMENSIONS AND MATERIALS						
& CASE SIZE	CODE	55681	& TYPE	W/T IS A Termination surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)			LS		
100B	WN	Meets Require- ments	B Non-Mag Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow \\ \to & \downarrow & \downarrow & \downarrow \\ \end{array}$.110 +.025010 (2.79 +0.64 -0.25)	110 ±.015 (2.79 ±0.38)			Non-	ead, Sold over Magnetic Terminati	Barrier		
100B	PN	Meets Require- ments	B Non-Mag Pellet	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & w \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ \hline & \downarrow \\ \hline & \downarrow \\ \hline & w \\ \hline & \downarrow \\ \hline & w \\ \hline & \downarrow \\ & \downarrow \\ & \downarrow \\ \hline & \downarrow \\ & \downarrow \\ \hline & \downarrow \\ & \downarrow \\$.110 +.035010 (2.79 +0.89 -0.25)	110 ±.015 (2.79 ±0.38)	.102 (2.59) max	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination				
100B	TN	Meets Require- ments	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{w} & \underline{m} \\ \to \left L \right \leftarrow \uparrow \to \right T \left \leftarrow \right \end{array}$.110 +.025010 (2.79 +0.64 -0.25	110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Nickel Barrier Termina		over etic		
100B	MN	Meets Require- ments	B Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.120 (3.05) max.				Length (L _L)	Width (W _L)	Thickness (T _L)
100B	AN	Meets Require- ments	B Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow \rightarrow \mid \leftarrow \\ \hline \psi_{L} & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \rightarrow \mid L \mid \leftarrow & & \uparrow \\ \hline \end{array}$.135 ±.015 (3.43 ±0.38)				.250 (6.35) min	.093 ±.005 (2.36 ±0.13)	.004 ±.001 (.102 ±.025)		
100B	FN	Meets Require- ments	B Non-Mag Radial Ribbon	$\begin{array}{c c} & \xrightarrow{\psi} & \xrightarrow{\downarrow} \downarrow_{L} \downarrow_{\leftarrow} \\ \hline \rightarrow \downarrow_{L} \downarrow_{\leftarrow} & \xrightarrow{\uparrow} \downarrow_{T} \downarrow_{\leftarrow} & \xrightarrow{\uparrow} \end{array}$.110 ±.015 (2.79 ±0.38)	.102 (2.59)	N/A					
100B	RN	Meets Require- ments	B Non-Mag Radial Wire	→ L ← → T → W ←	.145 ±.020 (3.68		max.				AWG., 406) dia.		
100B	BN	Meets Require- ments	B Non-Mag Axial Wire	→ L	±0.51)				in. min.		minal		

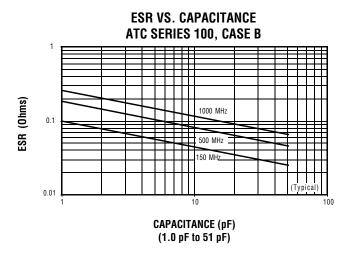
Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

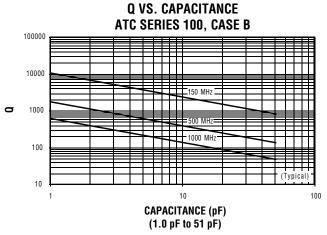
Suggested Mounting Pad Dimensions

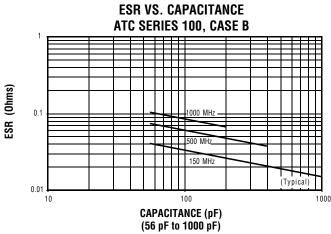
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.
0.1 nE	Normal	.065	.050	.075	.175
0.1 pF	High Density	.045	.030	.075	.135
0025	Normal	.090	.050	.075	.175
0.2 pF	High Density	.070	.030	.075	.135
0.3 to	Normal	.110	.050	.075	.175
510 pF	High Density	.090	.030	.075	.135
> 510 pF	Normal	.120	.050	.075	.175
2010 pr	High Density	.100	.030	.075	.135

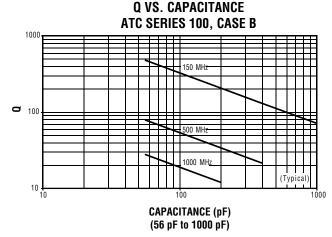
Case B Vertical Mount

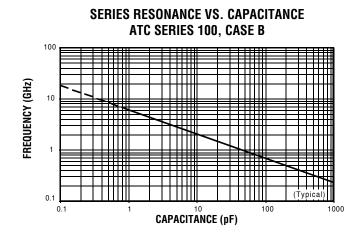
Horizontal Mount										
All	Normal	.130	.050	.075	.175					
values	High Density	.110	.030	.075	.135					

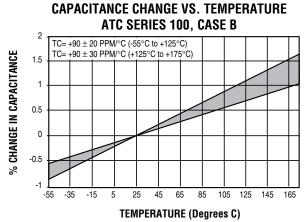

AMERICAN TECHNICAL CERAMICS

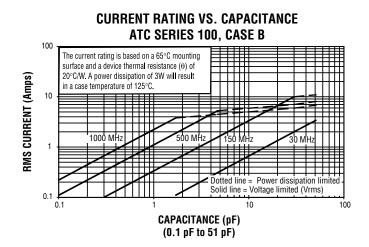

ATC North America sales@atceramics.com

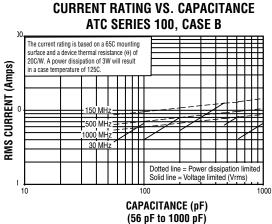

ATC Europe saleseur@atceramics.com

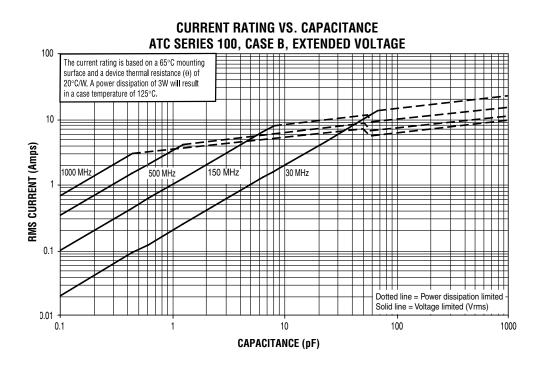

ATC Asia sales@atceramics-asia.com


ATC 100 B Performance Data




AMERICAN TECHNICAL CERAMICS


ATC North America sales@atceramics.com


ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

ATC 100 B Performance Data

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B; 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved

ATC # 001-807 Rev. R 2/17

TECHNICAL ATC Europe

ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

CERAMICS

