imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR®

100LVEL16 3.3V ECL Differential Receiver

General Description

The 100LVEL16 is a low voltage differential receiver that contains an internally supplied voltage source, V_{BB} . When used in a single ended input condition the unused input must be tied to V_{BB} . When operating in this mode use a 0.01 μF capacitor to decouple V_{BB} and V_{CC} and also limit the current sinking or sourcing capability to 0.5mA. When V_{BB} is not used it should be left open.

With inputs open the differential Q outputs default LOW and $\overline{\rm Q}$ outputs default HIGH.

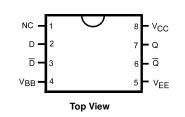
The 100 series is temperature compensated.

Features

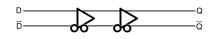
- Typical propagation delay of 300 ps
- Typical I_{EE} of 17 mA
- Internal pull-down resistors on D
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8

January 2003

Revised February 2003


- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance:

Human Body Model > 2000V Machine Model > 150V


Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description									
100LVEL16M	M08A	KVL16	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow									
100LVEL16M8 (Preliminary)	MA08D	KV16	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide									
Devices also available	Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.											

Connection Diagram

Logic Diagram

Pin Descriptions

Pin Name	Description
Q, Q	ECL Data Outputs
D, D	ECL Data Inputs
V _{BB}	Reference Voltage
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

00LVEL16 3.3V ECL Differential Receiver

Absolute Maximum Ratings(Note 1)

PECL Supply Voltage (V_{CC}) $V_{EE} = 0V$	0.0V to +8.0V
NECL Supply Voltage (V _{EE}) $V_{CC} = 0V$	0.0V to -8.0V
PECL DC Input Voltage (V _I) $V_{EE} = 0V$	0.0V to +6.0V
NECL DC Input Voltage (V _I) $V_{CC} = 0V$	0.0V to -6.0V
DC Output Current (I _{OUT})	
Continuous	50 mA
Surge	100 mA
V _{BB} Sink/Source Current (I _{BB})	±0.5 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions

PECL Power Supply $(V_{EE} = 0V)$ NECL Power Supply $(V_{CC} = 0V)$ Free Air Operating Temperature (T_A)

 $V_{CC}=3.0V$ to 3.8V

 $V_{EE} = -3.8V \text{ to } -3.0V$ $-40^{\circ}C \text{ to } +85^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	-40°C				25°C		85°C			Units
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 3)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 3)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single Ended)	1490		1825	1490		1825	1490		1825	mV
V _{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
VIHCMR	Input HIGH Voltage Common Mode										
	Range (Differential) (Note 4)										
	V _{PP} < 500mV	1.2		2.9	1.1		2.9	1.1		2.9	v
	$V_{PP} \ge 500 mV$	1.5		2.9	1.4		2.9	1.4		2.9	v
IIH	Input HIGH Current (Note 5)			150			150			150	μA
IIL	Input LOW Current (Note 5) D	0.5			0.5			0.5			μA
	D	-600			-600			-600			

LVPECL DC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ (Note 2)

Note 2: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary ± 0.3 V.

Note 3: Outputs are terminated through a 50 Ω Resistor to V $_{CC}$ – 2.0V.

Note 4: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1 to 1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 5: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

Symbol	Parameter	_40°C			25°C			85°C			Units
	Falameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
VIH	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
VIL	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 8)										
	$V_{PP} < 500 mV$	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	v
	$V_{PP} \ge 500 mV$	-1.8		-0.4	-1.9		-0.4	-1.9		-0.4	v
IIH	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current D	0.5 600			0.5 600			0.5 600			μA

100LVEL16

Note 6: Input and output parameters vary 1 to 1 with V_CC. V_EE can vary $\pm 0.3 V.$

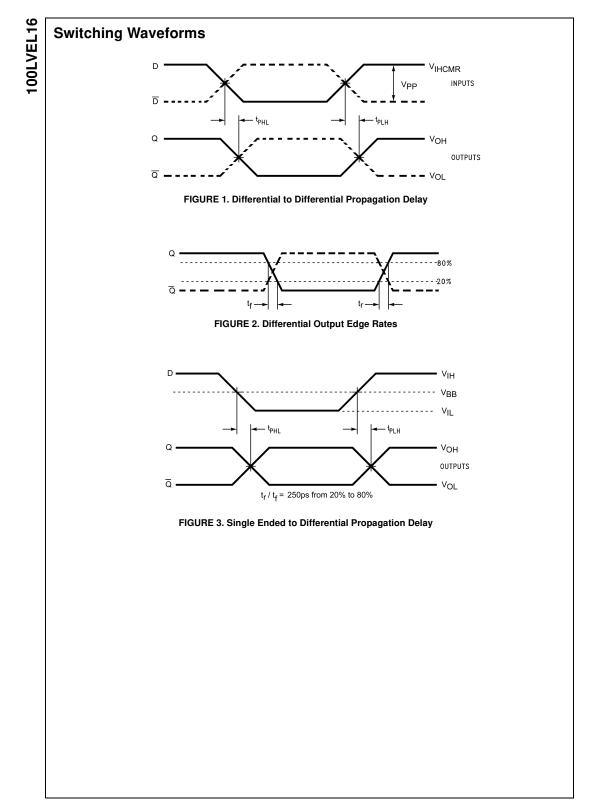
Note 7: Outputs are terminated through a 50 Ω Resistor to V_CC – 2.0V.

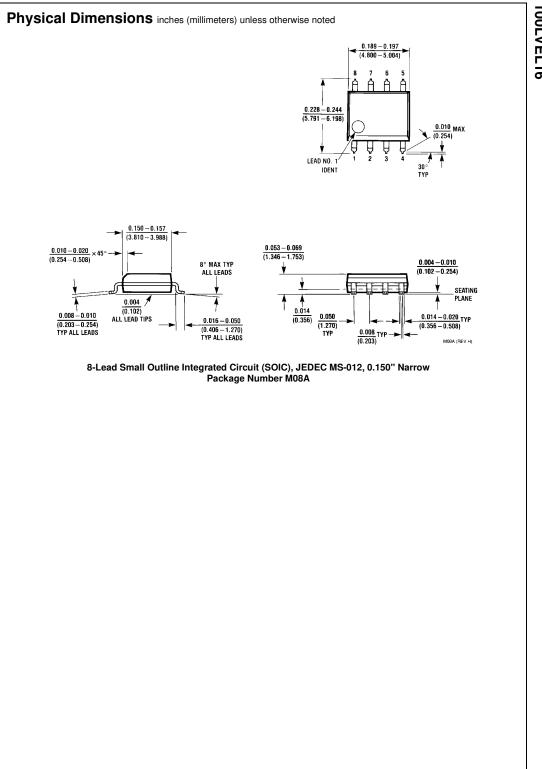
Note 8: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1-to-1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 9: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

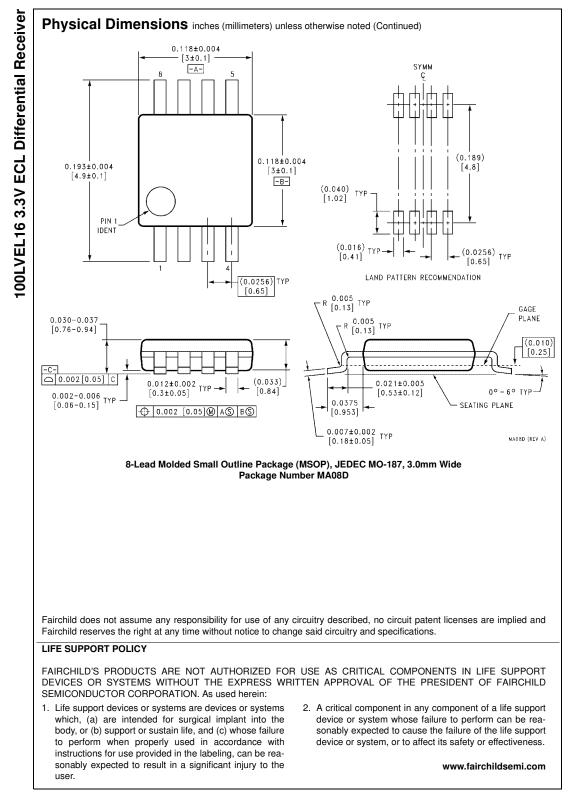
100LVEL16 AC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ or $V_{CC} = 0.0V$; $V_{EE} = -3.3V$ (Note 10) (Note 11)


Symbol	Parameter	-40°C			25°C			85°C			Units	Figure
Symbol	Farameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Number
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz	
t _{PLH} , t _{PHL}	Propagation Delay to Output (Diff)	150	275	400	225	300	375	240	315	390	ps	Figures
	(SE)	100	275	450	175	300	425	190	315	440		1, 3
t _{SKEW}	Duty Cycle Skew (Note 12)		5	30		5	20		5	20	ps	
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
V _{PP}	Input Swing	150		1000	150		1000	150		1000	mV	Figure 1
t _r , t _f	Output Rise Times Q (20% to 80%)	120	220	320	120	220	320	120	220	320	ps	Figure 2
	1.0.01/											


Note 10: V_{EE} can vary \pm 0.3V.

Note 11: Measured using a 750 mV input swing centered at V_{CC} - 1.32V; 50% duty cycle clock source; $t_r = t_f = 250$ ps (20% - 80%) at $f_{IN} = 1$ MHz. All loading with 50 Ω to V_{CC} - 2.0V.

Note 12: Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device under identical conditions.


www.fairchildsemi.com

100LVEL16

www.fairchildsemi.com

www.fairchildsemi.com