imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BL1700

C-Programmable Controller

User's Manual

019-0048 • 020415-G

BL1700 User's Manual

Part Number 019-0048 • 020415-G • Printed in U.S.A.

© 1999–2002 Z-World, Inc. • All rights reserved.

Z-World reserves the right to make changes and improvements to its products without providing notice.

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYSTEMS UNLESS A SPE-CIFIC WRITTEN AGREEMENT REGARDING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices or systems are devices or systems intended for surgical implantation into the body or to sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling and user's manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system of any size. In order to prevent danger to life or property, it is the responsibility of the system designer to incorporate redundant protective mechanisms appropriate to the risk involved.

Trademarks

- Dynamic $C^{\mathbb{R}}$ is a registered trademark of Z-World
- Windows[®] is a registered trademark of Microsoft Corporation
- PLCBusTM is a trademark of Z-World
- Hayes Smart Modem[®] is a registered trademark of Hayes Microcomputer Products, Inc.

Z-World, Inc. 2900 Spafford Street Davis, California 95616-6800 USA Telephone: (530)757-3737 Facsimile: (530)757-3792 Web Site: http://www.zworld.com E-Mail: zworld@zworld.com

vii

About This Manual

Chapter 1: Overview	11
Overview	
Features	
Flexibility and Customization	
Standard Models	
Customization Options	
Development and Evaluation Tools	
Development Kit	
Software	
CE Compliance	

Chapter 2: Getting Started	17
Development Kit Packing List	
Connecting the BL1700 to a Host PC	
Establishing Communication with the BL1700	
Running a Sample Program	

Chapter 3: BL1700 Hardware	23
Operating Modes	24
Changing the Operating Mode	25
Run Mode	
BL1700 Subsystems Overview	27
Microprocessor Core Module	
Core Module External Connections	
Digital Inputs and Outputs	29
External Connections	
Digital Inputs	
Operating Modes and Configuration	
Digital Outputs	
Operating Modes and Configuration	
High-Voltage Drivers	
Pulse-Width Modulation (PWM) Configuration	

Analog Inputs	
Operating Modes and Configuration	
Drift	45
Low-Pass Filter	45
Excitation Resistors	
Using the Unconditioned Converter Channels	
Internal Test Voltages	
Power-Down Mode	47
External Connections	47
Serial Channels	
Operating Modes and Configuration	
Configuring a Multidrop Network	51
RS-485 Termination	51
External Connections	
PLCBus	
Operating Modes and Configuration	
External Connections	
· · · · · · · · · · · · · · · · · · ·	

Chapter 4: Software Development

Supplied Software	58
Digital Inputs	59
How to Read the Input	59
Sample Program	60
Digital Outputs	61
Sample Program	62
Pulse-Width Modulated (PWM) Outputs	63
How to Use the PWM Feature	63
PWM Software	65
Sample Program	66
Analog Inputs	67
Using the Analog Inputs	67
Sample Program	69
Serial Channels	70
RS-232 Communication	70
RS-485 Communication	70
Software	71
Sample Program	71
LED.	72
Additional Software	72

57

Appendix A: Troubleshooting	73
Out of the Box	74
LCD Connected to BL1700 Does Not Work	74
Dynamic C Will Not Start	75
BL1700 Resets Repeatedly	
Troubleshooting Software	76
Appendix B: Specifications	77
Electronic and Mechanical Specifications	
BL1700 Mechanical Dimensions	79
Header and Jumper Information	
Protected Digital Inputs	
Frequency Response for the Protected Inputs	
High-Voltage Drivers	
Sinking Driver	
Sourcing Driver	
Appendix C [.] Field Wiring Terminals (FWT)	
and DIN Rails	89
Field Wiring Terminals	90
FWT38	
FWT50	
FWT-Onto	
FWT-A/D	
DIN Rails	
Appendix D: Sinking and Sourcing Drivers	00
Appendix D. Sinking and Sourcing Drivers	99
BL1/00 Series Sinking and Sourcing Outputs	
Installing Sourcing Drivers	
TTL/CMOS Outputs	
Using Output Drivers	103
Appendix E: PLCBus	105
PLCBus Overview	106
Allocation of Devices on the Bus	
4-Bit Devices	110
8-Bit Devices	
Expansion Bus Software	111

Appendix F: Serial Interface Board 2	117
Introduction	118
External Dimensions	119
Appendix G: Advanced Topics	121
Power Management	
Power Failure Detection Circuitry	122
Power Failure Sequence of Events	
Memory Map	125
Input/Output Select Map	125
Z180 Internal Input/Output Register Addresses 0x00-0x3F	125
BL1700 Peripheral Addresses	127
Epson 72423 Timer Registers 0x4180-0x418F	128
Interrupts	129
Interrupt Service Routines	129
Interrupt Vectors	130
Jump Vectors	131
Flash EPROM	132
Simulated EEPROM	132
Other Flash EPROM Software	133
Pulse-Width Modulation (PWM) Software	134
PWM Addressing Detail	134
PWM Software	138
Sample Program	140
Appendix H [.] Battery	141

Appendix H: Battery	141
Battery Life and Storage Conditions	142
Replacing Soldered Lithium Battery	142
Battery Cautions	143

Index

145

Schematics

ABOUT THIS MANUAL

This manual provides instructions for installing, testing, configuring, and interconnecting the Z-World BL1700 controller. Instructions are also provided for using Dynamic C functions.

Assumptions

Assumptions are made regarding the user's knowledge and experience in the following areas:

- Ability to design and engineer the target system that a BL1700 will control.
- Understanding of the basics of operating a software program and editing files under Windows on a PC.
- Knowledge of the basics of C programming.

 \bigcirc For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and Ritchie *C: A Reference Manual* by Harbison and Steel

• Knowledge of basic Z80 assembly language and architecture.

 \bigcirc For documentation from Zilog, refer to the following texts.

Z180 MPU User's Manual Z180 Serial Communication Controllers Z80 Microprocessor Family User's Manual

Acronyms

Table 1 lists and defines the acronyms that may be used in this manual.

Acronym	Meaning
EPROM	Erasable Programmable Read-Only Memory
EEPROM	Electronically Erasable Programmable Read-Only Memory
LCD	Liquid Crystal Display
LED	Light-Emitting Diode
NMI	Nonmaskable Interrupt
PIO	Parallel Input/Output Circuit (Individually Programmable Input/Output)
PRT	Programmable Reload Timer
RAM	Random Access Memory
RTC	Real-Time Clock
SIB	Serial Interface Board
SRAM	Static Random Access Memory
UART	Universal Asynchronous Receiver Transmitter

Table 1. Acronyms

lcons

Table 2 displays and defines icons that may be used in this manual.

lcon	Meaning	lcon	Meaning
\$	Refer to or see		Note
T	Please contact	Tip	Tip
\triangle	Caution		High Voltage
	Factory Default		

Table 2. Icons

Conventions

Table 3 lists and defines the typographic conventions that may be used in this manual.

Example	Description
while	Courier font (bold) indicates a program, a fragment of a program, or a Dynamic C keyword or phrase.
// IN-01	Program comments are written in Courier font, plain face.
Italics	Indicates that something should be typed instead of the italicized words (e.g., in place of <i>filename</i> , type a file's name).
Edit	Sans serif font (bold) signifies a menu or menu selection.
	An ellipsis indicates that (1) irrelevant program text is omitted for brevity or that (2) preceding program text may be repeated indefinitely.
[]	Brackets in a C function's definition or program segment indicate that the enclosed directive is optional.
< >	Angle brackets occasionally enclose classes of terms.
a b c	A vertical bar indicates that a choice should be made from among the items listed.

Table 3. Typographic Conventions

Pin Number 1

A black square indicates pin 1 of all headers.

Measurements

All diagram and graphic measurements are in inches followed by millimeters enclosed in parenthesis.

CHAPTER 1: **OVERVIEW**

Chapter 1 provides an overview and a brief description of the BL1700 features.

Overview

The BL1700 is a feature-rich controller with modular digital and analog I/O that allows easy custom modification. The BL1700 is programmed using Dynamic C, Z-World's version of the C programming language designed for embedded control.

Figure 1-1 illustrates the BL1700 board layout.

Figure 1-1. BL1700 Board Layout

Features

The BL1700 includes the following features.

Core Module

The BL1700 uses a core module (Z-World part number 129-0099) designed for easy, in-system programming. The core module includes the CPU, RAM, flash EPROM, real-time clock, and microprocessor watchdog circuitry.

• I/O

Serial channels—Four full-duplex serial channels interface directly with serial I/O devices. RS-232 and RS-485 signal levels are supported.

Digital inputs—Up to 32 protected digital inputs capable of detecting logic level or high-voltage signals.

Digital outputs—Up to 32 high-voltage, high-current outputs capable of driving resistive and inductive loads.

Pulse-width modulated outputs—Up to 7 digital outputs can provide pulse-width modulation.

Analog inputs—Eight conditioned analog inputs, each with user-configurable bias and gain, interface directly with many sensors. Two unconditioned analog inputs which allow for custom signal conditioning circuitry or direct interfacing.

Expansion bus—I/O expansion via built-in PLCBus. The PLCBus uses inexpensive off-the-shelf Z-World expansion boards.

Additional Features

Field Wiring Terminals—Removable field wiring terminals in several configurations are available for the digital and analog I/O ports.

Compact form factor—Compatible with standard 100 mm wide DIN mounting products.

LED—A general-purpose, user-programmable LED is included.

DIN Rails—The Bl1700 may be mounted in 110 mm DIN rail trays.

 \bigcirc Appendix B provides detailed specifications for the BL1700.

See Appendix C, "Field Wiring Terminals (FWT) and DIN Rails," for more information on FWTs and DIN rail mounting.

Flexibility and Customization

The BL1700 was designed with customization in mind. The design was optimized for cost effective, quick-turn, custom manufacturing. Surface mount technology was used extensively in order to reduce both size and cost while providing the flexibility to meet individual design needs. For quantity orders, the BL1700 can be customized to better meet the needs of your application.

Standard Models

The BL1700 Series of controllers currently has four versions. Table 1-1 lists the standard features for these versions.

Model	Features
BL1700	18.432 MHz clock, 16 protected digital inputs, 16 high- voltage sinking outputs, 4 full-duplex serial channels, 10 A/D channels, PLCBus expansion port.
BL1710	BL1700 without A/D channels.
BL1720	BL1700 with two serial channels instead of four.
BL1730	BL1700 with two serial channels instead of four and 9.216 MHz clock.

Table 1-1. BL1700 Series Features

Customization Options

The BL1700 can be customized for individual applications. The options include the following configurations.

 Core module configuration—CM7100 and CM7200 core modules can be used on the BL1700. Customization options include RAM size, flash EPROM size, EPROM size, clock speed, and real-time clock option.

CM7100 and CM7200 core modules must have a 5-pin header installed at H1, and the BIOS must be customized for these core modules to be used on the BL1700.

- Digital I/O configuration—optional TTL level I/O.
- Analog input configuration—gain and offset configuration.
- Serial channel configuration—two or four serial ports.

For ordering information, or for more details about the various options and prices, call your Z-World Sales Representative at (530) 757-3737.

Development and Evaluation Tools

The BL1700 is supported by a Development Kit that includes everything you need to start development with the BL1700.

Development Kit

The Development Kit includes these items.

- Manual with schematics.
- Programming cables and adapter. ٠
- 24 V DC wall-mount power supply. •
- Field wiring terminals.
- Sourcing high-voltage driver ICs.

An optional Serial Interface Board (SIB) allows full access to all serial ports during development.

Software

The BL1700 is programmed using Z-World's Dynamic C, an integrated development environment that includes an editor, a C compiler, and a debugger. Library functions provide an easy and robust interface to the BL1700.

Z-World's Dynamic C reference manuals provide complete software descriptions and programming instructions.

CE Compliance

The BL1700 has been tested by an approved competent body, and was found to be in conformity with applicable EN and equivalent standards. Note the following requirements for incorporating the BL1700 in your application to comply with CE requirements.

CE

- The power supply provided with the Development Kit is for development purposes only. It is the customer's responsibility to provide a clean DC supply to the controller for all applications in end-products.
- Fast transients/burst tests were not performed on the BL1700. Signal and process lines that are longer than 3 m should be routed in a separate shielded conduit.
- The BL1700 has been tested to Light Industrial Immunity standards. Additional shielding or filtering may be required for an industrial environment.
- The BL1700 has been tested to EN55022 Class A emission standards. Additional shielding or filtering may be required to meet Class B emission standards.

Visit the "Technical Reference" pages of the Z-World Web site at http://www.zworld.com for more information on shielding and filtering.

CHAPTER 2: GETTING STARTED

Chapter 2 provides instructions for connecting the BL1700 to a host PC and running a sample program. The following sections are included.

- Development Kit Packing List
- Connecting the BL1700 to Your PC
- Establishing Communication with the BL1700
- Running a Sample Program

Development Kit Packing List

The BL1700 Development Kit includes the following items.

- Two serial cables with DB-9 and 10-pin header connectors.
- DB-25 to DB-9 serial adapter.
- 24 V DC wall-mount power transformer.
- Two FWT-50 field wiring terminals.
- One FWT-A/D field wiring terminal.
- Two 2985 high-voltage driver ICs.
- BL1700 User's Manual (this document).

Connecting the BL1700 to a Host PC

The BL1700 can be programmed using a PC through an RS-232 port with the programming cable provided in the Developer's Kit. You can also use Z-World's SIB2 to program the BL1700. Using the SIB2 frees all of the serial channels for the application during development. The SIB2 is not part of the standard Developer's Kit, and must be purchased separately. Both programming methods are described below.

For ordering information, call your Z-World Sales Representative at (530) 757-3737.

Connecting the BL1700 to a PC using the serial port.

- 1. Make sure that Dynamic C is installed on your system as described in the Dynamic C *Technical Reference* manual.
- 2. Connect the 10-pin programming cable from H12 on the BL1700 to the appropriate COM port of your computer as shown in Figure 2-1. Make sure that pin 1 on the ribbon cable connector (indicated by a small triangle on the connector) matches up with pin 1 on H12 (indicated by a small white circle near the corner of the connector).

Figure 2-1. BL1700 Programming Connections

Use only the transformer and programming cable supplied by Z-World.

- 3. Make sure that the Run/Program jumper on header H4 is installed.
- 4. Connect the 24 V DC transformer as follows.
 - Connect the lead with the red sleeve to the screw terminal (J1) labeled DCIN on the BL1700.
 - Connect the other lead to the screw terminal (J1) labeled GND.
- 5. Plug the transformer into a wall socket.

Connecting the BL1700 to your PC using the SIB2.

- 1. Make sure that Dynamic C is installed on your system as described in the *Dynamic C Technical Reference* manual.
- 2. Disconnect power from the BL1700. Connect an RJ-12 cable between the RJ-12/DB-9 adapter attached to the PC and the SIB2.
- 3. Plug the SIB2's 8-pin connector onto header JP1 located on the CM7200 core module (mounted on the BL1700), as shown in Figure 2-2. Make sure that pin 1 on the ribbon cable connector (on the striped side) matches up with pin 1 on JP1 (indicated by a small white circle next to the header).

Figure 2-2. SIB2 Connection (BL1700 Top View)

Use only the transformer and programming cable supplied by Z-World.

Observe the polarity of the cable and the 8-pin connector. Attach the connector to JP1 exactly as shown in Figure 2-2.

- 4. Make sure that the Run/Program jumper on header H4 is installed.
- 5. Connect the 24 V DC transformer as follows.
 - Connect the lead with the red sleeve to the screw terminal (J1) labeled DCIN on the BL1700.
 - Connect the other lead to the screw terminal (J1) labeled GND.
- 6. Plug the power supply into a wall socket.

Establishing Communication with the BL1700

- 1. Double-click the Dynamic C icon to start the software. Note that communication with the BL1700 is attempted each time you start Dynamic C.
- 2. If the communication attempt is successful, no error messages are displayed.

See Appendix A, "Troubleshooting," if an error message such as **Target Not Responding** or **Communication Error** appears.

Once the necessary changes have been made to establish communication between the host PC and the BL1700, use the Dynamic C shortcut **<Ctrl Y>** to reset the controller and initiate communication.

Running a Sample Program

- 1. Open the sample program **BL17FLSH**.**C** located in the Dynamic C **SAMPLES\BL17XX** directory. This program flashes the onboard LED.
- 2. Compile the program by pressing **F3** or by choosing **Compile** from the **Compile** menu. Dynamic C compiles and downloads the program into the BL1700's flash memory.

During compilation, Dynamic C rapidly displays several messages in the compiling window. This condition is normal.

See Appendix A, "Troubleshooting," if an error message such as **Target Not Responding** or **Communication Error** appears.

- 3. Run the program by pressing **F9** or by choosing **Run** from the **Run** Menu.
- 4. To halt the program, press **<Ctrl Z>**. This action halts program execution.
- 5. To restart program execution, when required, press F9.

CHAPTER 3: BL1700 HARDWARE

Chapter 3 describes the BL1700 hardware subsystems. The following sections are included.

- Operating Modes
- BL1700 Subsystems Overview
- Microprocessor Core Module
- Serial Communications Channels
- High-Voltage Digital Outputs
- Protected Digital Inputs
- Analog Inputs
- PLCBus Expansion Port

Operating Modes

The BL1700 has two mutually exclusive operating modes, run mode and program mode. Each mode is explained in detail below.

• Program Mode

In program mode, the BL1700 controller runs under the control of your PC that is running Dynamic C. The BL1700 must be in this mode to compile a program to the BL1700 or debug a program.

- In program mode, the BL1700 matches the baud rate of the PC COM port up to 57,600 bps.
- USER LED is "ON" in program mode.

• Run Mode

In run mode, the BL1700 controller runs standalone. At power-up, the BL1700 checks to see if its onboard memory contains a program. If a program exists, the BL1700 controller executes the program immediately after power-up.

- In run mode, the BL1700 does not respond to Dynamic C running on the PC. A program cannot be compiled or debugged when the BL1700 is in run mode.
- USER LED D2 is under the control of the application on the BL1700 when the BL1700 is in run mode.

Table 3-1 shows the jumper settings for the program and run modes.

Table 3-1. BL1700 Jumper Settings for Run/Program Modes

Operating Mode	Header H4	Permissible Activities
Program Mode	• H4	 Compile a program. Run a program under debugger control. Run a program without "polling." See your Dynamic C manuals for a description of program polling.
Run Mode	■ H4	Run application.

Changing the Operating Mode

1. Locate the **Run/Program** jumper on header H4. Figure 3-1 shows the location of header H4.

Figure 3-1. H4 Run/Program Jumper Location

- 2. Select the desired operating mode.
 - Install jumper on header H4 to select program mode.
 - Remove jumper on header H4 to select run mode.
- 3. Press the reset switch SW1 to switch the BL1700 to the selected mode.

Be sure careful when installing or removing the H4 jumper if power is connected to the BL1700.