imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

	eNet-ZB	ZigBee Module User Manual
User Manual	BestU	eNet-ZBP113 Module-Networking Firmware Version

User Manual

V1.0 – August 16,2014

BestU

www.bestni.com/en

Copyright Statement:

- Unless otherwise noted, the eNet-ZB Serials includes but not limit to eNet-ZBP113, eNet-ZBP111, eNet-ZBP211, eNet-ZBP213.
- eNet, eNet-ZB Serials ZigBee wireless module and its related Intellectual Property owned by Shenzhen BestU Intelligent Technology Co.,Ltd.
- Without the permission of Shenzhen BestU Intelligent Technology Co.,Ltd ,No one can modify, distribute or copy any part of this document.

Legal Disclaimer:

The source code, software, documents in company with eDuino UNO, Shenzhen BestU Intelligent Technology Co.,Ltd does not provide any guarantee; Not matter specific, connotative, including but not limited to specific purpose, all the risk should be undertook by end user; If coming out bug in the program, end user undertakes the all the necessary fee of service, modification, amends.

Versio	n U	pd	ateo	d:	

Version	Updated Date	Description
1.0	2014-08-16	Released

Catalogue

1	Pro	duct Over	rview	4			
	1.1	1.1 Product Description4					
	1.2	1.2 Package List					
	1.3	.3 Development Kits					
		1.3.1	eDuino UNO Wireless Kit	7			
		1.3.2	Simple Wireless Kit	8			
2	Har	dware Fe	ature	9			
	2.1	Dimer	nsions	9			
	2.2	Pin-O	ut	10			
	2.3	Produ	Ict Specification	12			
	2.4	Electr	ic Property	13			
		2.4.1	Absolute Ratings	13			
		2.4.2	Operating Ratings	13			
	2.5	Туріса	al Application	14			
3	Con	figuratior	n	15			
	3.1	Config	guration command	15			
	3.2	Config	guration software	15			
4	Con	figuratior	n Command	19			
	4.1	Config	guration Command Format	19			
	4.2	Config	guration Command Description	21			
		4.2.1	Set PANID (0x41)	21			
		4.2.2	Read PANID (0x01)	21			
		4.2.3	Set Device Type (0x42)	21			
		4.2.4	Read Device Type (0x02)	22			
		4.2.5	Read Device Short Address (0x03)	22			
		4.2.6	Set Communication Channel (0x44)	23			
		4.2.7	Read Communication Channel (0x04)	24			
		4.2.8	Set Serial Port Rate (0x45)	24			
		4.2.9	Read Serial Rate (0x05)	24			
		4.2.10	Set User ID (0x46)	25			
		4.2.11	Read User ID (0x06)	25			
		4.2.12	Set Transmission Mode (0x47)	25			
		4.2.13	Read Transmission Mode (0x07)	26			
		4.2.14	Set Transmission Power (0x48)	26			
		4.2.15	Read Transmission Power (0x08)	27			
		4.2.16	Read Device MAC Address (0x09)	27			
		4.2.17	System Reset (0x4A)	27			

ZigBee Wireless sensor network module

5	Data	a Transmi	ssion Mode	
	5.1	Transp	parent Transmission	28
		5.1.1	Direct Transparent Transmission Mode	28
		5.1.2	Transparent Transmission with Short Address	28
		5.1.3	Transparent Transmission with MAC Address	29
		5.1.4	Transparent Transmission with User ID	29
	5.2	Point-	to-Point Transmission	30
		5.2.1	Point-to-Point Transmission with Short address	31
		5.2.2	Point-to-Point Transmission with User ID	31
6	Мо	dule Netw	vork	32
	6.1	ZigBee	e network Node	32
		6.1.1	Coordinator	32
		6.1.2	Router	32
		6.1.3	End Device	33
	6.2	ZigBee	e MESH Character	33
	6.3	eNet-2	ZBP113 Network Test	34
		6.3.1	Coordinator Configuration	34
		6.3.2	Router settings	35
		6.3.3	Joining A Network	36
		6.3.5	Network Communication Test	37
7	Con	tact US		
Арр	endi	x I Default	t Parameters	39
Арр	endi	x II FAQ		40
Арр	endi	x III Techn	nical Support	42

1 Product Overview

1.1 Product Description

eNet-ZBP113 module is a ZigBee embedded wireless module which is based on TI CC2530F256 and designed by BestU. The features of the chip, such as low power, excellent performance of a leading RF transceiver, SoC for IEEE 802.15.4 with 8051MCU, TI Z-Stack[™] protocol stack and etc. make it a robust and complete ZigBee RF4CE remote-control solution.

eNet-ZBP113 module operates in the unlicensed 2.4GHz ISM(Industrial, Scientific and Medical) band with data rate up to 250kb/s. Sixteen channels are allocated in the 2.4 GHz band, with each channel requiring 5 MHz of bandwidth. Self-organizing network and easy to use are the main features of eNet-ZBP113module. It is not necessary for you to understand complex ZigBee protocol. All the processing part of ZigBee protocol can be done internally by eNet-ZBP113 module. What you only need to do is to sending and receiving data via serial port, which can shorten lead time of product tremendously. Meanwhile eNet-ZBP113 module has the advantage of low-power and low-cost. As a consequence, eNet-ZBP113 module is the best choice for remote monitoring application, such as smart home, smart grid, industrial automation and security monitoring and etc.

BestU provides two kinds of ZigBee application protocols within the eNet-ZBP113 module, one for networking communication protocol, another for point-to-point communication protocol. The eNet-ZB series modules are named according to their hardware and software features in the

ZigBee Wireless sensor network module

following form:

eNet-ZB	P	0	0	1
Product Type:		8		85
P = for product				
C = for maker				
Firmware Type				
1 = Networking				
2 = Point to Point		39		
Antenna Type				
0 = PCB Antenna				
1 = SMA Antenna				
2 = Chip Antenna				
Hardware Version				
1 = Pin header				
2 = Postage stamp hole				
3 = Pin header , with Power Amplifier				
4 = Postage stamp hole, with Power Amplifier				

ZigBee Wireless sensor network module

1.2 Package List

Table 1-1 Package list					
Product Name	eNet-ZBP113				
Standard Configuration	1) eNet-ZBP113 * 1				
	2) 2.4G Antenna *1				
Optional Accessories	1) eDuino UNO				
	2) eNet-Test-A base board				

User Manual

1.3 Development Kits

There are two available development kits for eNet-ZBP113, eDuino UNO wireless kit and Simple Wireless kit.

1.3.1 eDuino UNO Wireless Kit

What's included in the eDuino UNO kit:

Table 1-2 Package List of eDuino UNO Kit

Part Description	Quantity / PCS
eNet-ZBP113	1
2.4GHz Antenna(2.5dBi)	1
eDuino UNO	1
Jumper	2

User Manual

1.3.2 Simple Wireless Kit

What's included in the Simple Wireless kit:

Table 1-3	Package	List of	Simple	Wireless	Kit
	I UCRUSC	LISC OI	Junpic	VVII CIC33	i vi c

Part Description	Quantity / PCS
eNet-ZBP113	1
2.4GHz Antenna(2.5dBi)	1
eNet-Test-A	1

2 Hardware Feature

2.1 Dimensions

UNIT: mm

Figure 2-1 Dimensions

2.2 Pin-Out

Figure 2-2 Pin out diagram

Table 2-1 Pin out description					
Pin NO	Pin Name	Direction	Function	Remark	
1	VDD	_	3.3V Power		
2	GND	—	GND		
3	тх	0	TXD	TTL (3.3V)	
4	RX	I	RXD	TTL (3.3V)	
5	RTS	—	NC	Reserve	
6	СТЅ	—	NC	Reserve	
7	P0_7	0	Communication State	1HZ square wave output	
8	P0_6	0	Network Connection	1HZ square wave output in	
			State	specific case	
9	RST	I	RST	Reserve.	
10	P0_0	—	NC	Reserve	
11	NC	—			
12	GND	_			
13	NC	—			
14	NC	_			
15	P2_0	_	NC	Reserve	

User Manual

	ZigBee Wireless sensor network module						
16	P1_7	—	NC	Reserve			
17	P1_6	_	NC	Reserve			
18	P1_5	—	NC	Reserve			
19	P1_3	_	NC	Reserve			
20	P1_2	—	NC	Reserve			

Note: The reserved pins mentioned above do not need to pay attention in actual case. Only need to connect RX, TX, VDD and GND.

- P0_6 & P0_7 Output Specification
 - When configured as Coordinator

P0_6 outputs high level after reset. If ZigBee protocol working regularly, P0_6 outputs 1HZ square wave.

P0_7 outputs low level after reset. It will output a high level when receive data (The hold time is determined by the total receive time of a package data).

• When configured as Router or End Devices

P0_6 outputs high level after reset. If the module has connected to a network, P0_6 will output 1HZ square wave.

P0_7 outputs low level after reset. It will output a high level when receive data (The holding time is determined by the total receive time of a package data).

- Serial port default settings:
 - Default baud rate: 38400bps

Recommended configuration: 38400bps

Baud rate range: 1200~38400bps.

- Parity: None
- Data: 8bit
- Stop: 1bit
- Serial port data sending limitation

Max package size: 256 Byte.

2.3 Product Specification

Typical DC Character (V	Remark	
mA(TXD)	120mA(Max)	
mA(RXD)	40mA(Max)	
mA(Standby)	35 mA(Max)	
Typical RF Character		
Frequency Range	2.405GHz~2.480GHz	
RF Channel Quantities	16	
TX Rate	250Kbps(Max)	
RX sensitivity	-97dBm	
TX Power	10-20 dBm	Adjustable.20dBm default
Output Impedance	50 ohm	
Typical Networking Chara	acter	
Wireless Protocol	ZigBee 2007	
Network Node	65535(Max)	
Configured Node	Coordinator / Router	
Network Topology	Mesh Network (MESH)	
Distance	1600 meters	Visible, open transmission
		distance

Table 2-2 Product Specification

2.4 Electric Property

2.4.1 Absolute Ratings

Parameter	Min	Max	Remark
Supply Voltage	-0.3V	3.6V	
Pin	-0.3V	VDD+0.6V	
Temp Range	-40℃	85℃	

Table 2-3 Absolute Ratings

2.4.2 **Operating Ratings**

Table 2-4 Operating Ratings

Parameter	Min	Max	Remark
Supply Voltage	2.7V	3.3V	
Temp Range	-40 ℃	85 ℃	
Humidity Range	0%	90%	No Condensation

User Manual

2.5 Typical Application

eNet-ZB serials modules provide transparent data transmission through serial port. The typical application as below:

Figure 2-3 Typical Application Diagram

User Manual

3 Configuration

eNet-ZBP113 provides convenient and efficient configuration methods. Users can reconfigure parameters with configuration commands or with configuration software tool on PC. The module will work with new parameters after reset.

3.1 Configuration command

Configuration commands are need if you want to change the configuration with using a MCU or MPU. Please refer to *Figure 2-3 Typical Application Diagram* and *4.2 configuration command description*.

3.2 Configuration software

1) To connect the module with Serial Port. Click *Connect* button.

CUM CUM7 - Baud Kate	38400	Connect
NetWork		Get Par
Point Type	Setting	Restart
Short Add		
MAC Add		
Radio		
Channel 🗾 👻		
TX Power	Setting	
COM		
	1	

Figure 3-1 Connect the Module

User Manual

ZigBee Wireless sensor network module

2) Get the parameters from the Module.

Click the *Get Para* to get the current parameters of the module.

OM COM7	- Baud Rate 38400	Unconnect
NetWork		Get Para
PANID	199B	-
Point Type	Coordinator 🔹 Setting	Restart
Short Add	0000	
MAC Add	00 12 4B 00 03 C4 2D 1E	
Radio		
Channel	Channel 11 -	
TX Power	20dbm V	
COM		
Baud Bate	38400 v Setting	

Figure 3-2 Get the parameters

3) Set the *Network* parameters.

Set the **PANID** or change the **Point type**. Click **Setting** button to finish the setting.

COM COM7	- Baud Rate 38400	Unconnect
NetWork PANID	1998	Get Para
Point Type	Coordinator 🔻 Settin	Restart
Short Add	0000	
MAC Add	00 12 4B 00 03 C4 2D 1E	
Radio		
Channel	Channel 11 🔻	
TX Power	20dbm 🔻	LE
COM		
		-

Figure	3-3 5	et the	network	parameters
1 Barc	555		network	parameters

Copyright ©2014 Shenzhen BestU Intelligent Technology Co.,Ltd

4) Set the *Radio* parameters.

Set the *Channe*l or *TX Power* and click *Setting* to finish the setting.

🏑 ZigBee Co	nfig Tool V1.0	
COM COM7	- Baud Rate 38400	Unconnect
NetWork PANID	1993	Get Para
Point Type	Coordinator - Setting	Restart
Short Add	0000	
MAC Add	00 12 4B 00 03 C4 2D 1E	
Radio		
Channel	Channel 11 V	
TX Power	20dbm V	
COM		
Baud Rate	38400 v Setting	
1		

Figure 3-4 Set the Radio parameters

5) Set the *COM* parameters.

Set the *Baud Rate* and click the *Setting* to finish the Setting.

COM COM7	- Baud Rate 38400	Unconnec
NetWork PANID	[[993]	Get Para
Point Type	Coordinator 👻 Setting	Restart
Short Add	0000	
MAC Add	00 12 4B 00 03 C4 2D 1E	
Radi o		
Channel	Channel 11 V	
TX Power	20dbm V	
COM		
Baud Rate	38400 Setting	5

Figure 3-5 Set the UART parameters

User Manual

ZigBee Wireless sensor network module

6) *Restart* the module.

Click the *Restart* to make the module work with the parameters set by steps before after restart.

COM COM7	Baud Rate 38400	Unconnect
NetWork		Get Para
PANID	199B	
Point Type	Coordinator 👻 Setting	Restart
Short Add	0000	
MAC Add	00 12 4B 00 03 C4 2D 1E	
Radio		
Channel	Channel 11 -	
TX Power	20dbm V	
COM		
Baud Rate	38400 - Setting	

Figure 3-6 Restart module

7) Connect the module. Click *Get Para* and check the parameters is right .

4 Configuration Command

4.1 Configuration Command Format

Configuration Command is composed of Beginning Characters, Length, Control Field, Data and

Checksum.

Beginning Characters	Length	Control Field	Data	Parity
Figure 4-1 Configuration Command Format				

1) **Beginning Characters**: Consists of 1byte, 0xFE by default.

2) Length: Consists of 1byte.It's the number of byte of Control Field and Data.

 Control Field: It consists of 1byte and indicates the current command type. The configuration command list of eNet-ZB module is shown as below.

NO.	Control Field (HEX)	Description
1	0x01	Read PANID
2	0x41	Set PANID
3	0x02	Read device type
4	0x42	Set device type
5	0x03	Read Short Address
6	0x04	Read communication channel
7	0x44	Set communication channel
8	0x05	Read Serial port baud rate
9	0x45	Set Serial port baud rate
10	0x06	Read user ID
11	0x46	Set user ID
12	0x07	Read transmission mode
13	0x47	Set transmission mode
14	0x08	Read transmission power

Table 4-1 Configuration Command List

User Manual

- 4) **Data**: There are many kinds of command. For more details, refer to 4.2 *Configuration Command description.*
- 5) Checksum: it's octal arithmetic sum of Beginning Character, Length, Control Field and User

ID.

User Manual

4.2 Configuration Command Description

4.2.1 Set PANID (0x41)

This command is used to set PANID. The format of this command is as below:

|--|

Name	Length(Byte)	Description
PANID_H	1	High Byte of current PANID
PANID_L	1	Low Byte of current PANID

Example: The PANID need to be set as 0x199B.

Send: FE 03 41 19 9B F6

Right Response: FE 02 C1 00 C1

Error Response: FE 02 C1 01 C2

4.2.2 Read PANID (0x01)

This command is used to set PANID. For the format of this command, refer to Table 4-2 PANID

Command format.

Example: The current PANID is 0x199B.

Send: FE 01 01 00

Response: FE 03 81 19 9B 36

4.2.3 Set Device Type (0x42)

This command is used to configure device type (Coordinator or Router). The format of this command is as below:

Table 4-3 Device Type

Name	Length(Byte)	Description
Device Type	1	0x00: Coordinator
		0x01: Router

Example: The module needs to be set as Coordinator.

Send: FE 02 42 00 42

Right Response: FE 02 C2 00 C2

Error Response: FE 02 C2 01 C3

4.2.4 Read Device Type (0x02)

This command is used to read current device type. For the format of this command, refer to Table

4-3 Device Type.

Example: The module is Router type.

Send: FE 01 02 01

Response: FE 02 82 01 83

4.2.5 Read Device Short Address (0x03)

This command is used to read current short address. The format of this command is as follow:

Table 4-4 Short Address

Name	Length(Byte)	Description
ADDR_H	1	Current Network short address high byte
ADDR_L	1	Current Network short address low byte

Example: The device's network short address is 0x1ED6.

Send: FE 01 03 02

Response: FE 03 83 1E D6 78

4.2.6 Set Communication Channel (0x44)

This command is used to configure communication channel (there are 16 channels, which from

11 to 26, located in 2.4GHz band). The format of this command is as follow:

Name	Length(Byte)	Description
	4	0x00000800 Channel 11, 2405MHz
		0x00001000 Channel 12, 2410MHz
		0x00002000 Channel 13, 2415MHz
		0x00004000 Channel 14, 2420MHz
		0x00008000 Channel 15, 2425MHz
		0x00010000 Channel 16, 2430MHz
		0x00020000 Channel 17, 2435MHz
		0x00040000 Channel 18, 2440MHz
Channel		0x00080000 Channel 19, 2445MHz
		0x00100000 Channel 20, 2450MHz
		0x00200000 Channel 21, 2455MHz
		0x00400000 Channel 22, 2460MHz
		0x00800000 Channel 23, 2465MHz
		0x01000000 Channel 24, 2470MHz
		0x02000000 Channel 25, 2475MHz
		0x04000000 Channel 26, 2480MHz

	Communication	
laple 4-5	Communication	Channel

Example: Set the communication channel as20.

Send: FE 05 44 00 00 10 00 57

Right Response: FE 02 C4 00 C4

Error Response: FE 02 C4 01 C5

User Manual

ZigBee Wireless sensor network module

4.2.7 Read Communication Channel (0x04)

This command is used to read current communication channel. For the format of return data,

refer to Table 4-5 Communication Channel.

Example: The current communication channel is 21.

Send: FE 01 04 03

Response: FE 05 84 00 00 20 00 A7

4.2.8 Set Serial Port Rate (0x45)

This command is used to set UART rate. The format of this command is as follow:

Name	Length(Byte)	Description
Serial Port Badu Rate	1	0x00:Baud Rate 9600
		0x01:Baud Rate 19200
		0x02:Baud Rate 38400
		0x03:Baud Rate 57600
		0x04:Baud Rate 115200

Table 4-6 Serial Port Rate

Example: Set Serial Rate as 115200.

Send: FE 02 45 04 49

Right Response: FE 02 C5 00 C5

Error Response: FE 02 C5 01 C6

4.2.9 Read Serial Rate (0x05)

This command is used to read current serial rate. For the format of this command, refer to Table

4-6 Serial Port Rate.

Example: Current Serial Rate is 115200.

Send: FE 01 05 04

Response: FE 02 85 04 89 User Manual