imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

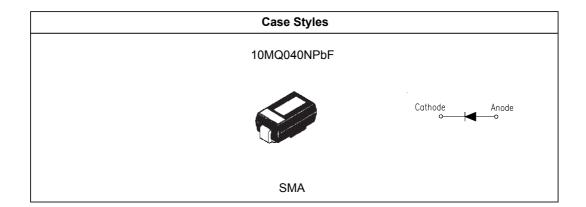
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International **tor** Rectifier

SCHOTTKY RECTIFIER

10MQ040NPbF

2.1 Amp


Major Ratings and Characteristics				
Char	acteristics	Value	Units	
١ _F	DC	2.1	A	
V _{RRM}		40	V	
I _{FSM}	@ tp = 5 µs sine	120	A	
V_{F}	@1.5Apk, T _J =125°C	0.56	V	
ТJ	range	- 55 to 150	°C	

Major Ratings and Characteristics

Description/ Features

The 10MQ040NPbF surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

10MQ040NPbF

Bulletin PD-20772 rev. A 07/04

International **tor** Rectifier

Voltage Ratings

Part number	10MQ040NPbF	
V _R Max. DC Reverse Voltage (V)	40	
V _{RWM} Max. Working Peak Reverse Voltage (V)		

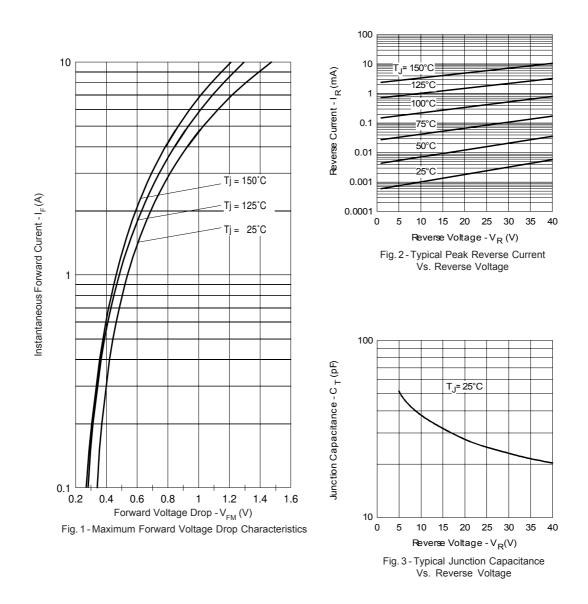
Absolute Maximum Ratings

	Parameters	10MQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current *See Fig. 4	1.5	A	50% duty cycle @ T_L = 123 °C, On PC board 9mm ² island(.013mr	0
I _{FSM}	Max. Peak One Cycle Non-Repetitive	120	Α.	5µs Sine or 3µs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied
	Surge Current * See Fig. 6	30		10ms Sine or 6ms Rect. pulse	
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_J = 25 ^{\circ}C, I_{AS} = 1A, L = 6mH$	
I _{AR}	Repetitive Avalanche Current	1.0	А		

Electrical Specifications

	Parameters	10MQ	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.54	V	@ 1A	T,= 25 °C
	* See Fig. 1	0.62	V	@ 1.5A	1 _J = 23 C
		0.49	V	@ 1A	T = 125 °C
		0.56	V	@ 1.5A	1, 120 0
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	V_{p} = rated V_{p}
	* See Fig. 2	26	mA	T _J = 125 °C	$v_{\rm R}$ – face $v_{\rm R}$
V _{F(TO}	Threshold Voltage	0.36	V	$T_J = T_J max.$	
r,	Forward Slope Resistance	104	mΩ		
C _T	C _T Typical Junction Capacitance		pF	V _R = 10V _{DC} , ⁻	T _J = 25°C, test signal = 1Mhz
L _S	Typical Series Inductance	2.0	nH	Measured lea	ad to lead 5mm from package body
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				

(1) Pulse Width < 300µs, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters	10MQ	Units	Conditions
TJ	Max. Junction Temperature Range (*)	- 55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 150	°C	
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.07(0.002)	g (oz.)	
	Case Style	SMA		Similar D-64
	Device Marking IR1F			

(*) dPtot

1 thermal runaway condition for a diode on its own heatsink dTj Rth(j-a)

Document Number: 94117

10MQ040NPbF

Bulletin PD-20772 rev. A 07/04

International

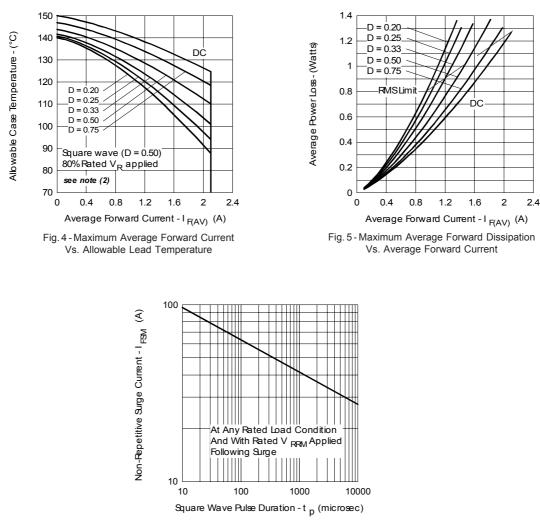
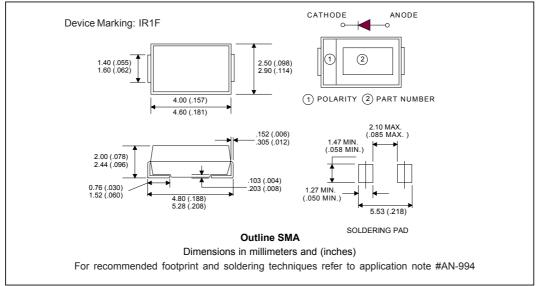


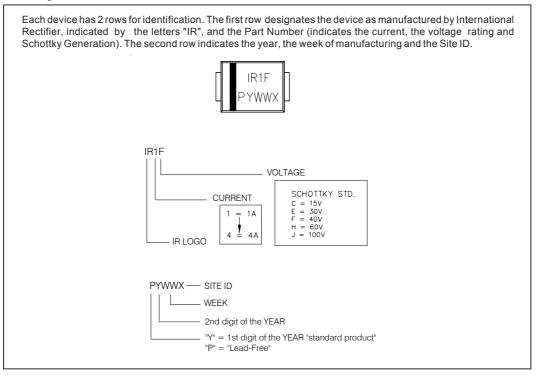
Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

```
(2) Formula used: T_c = T_J - (Pd + Pd_{REV}) \times R_{thJC};

Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D) (see Fig. 6);


Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1-D); I_R @ V_{R1} = 80\% rated V_R
```

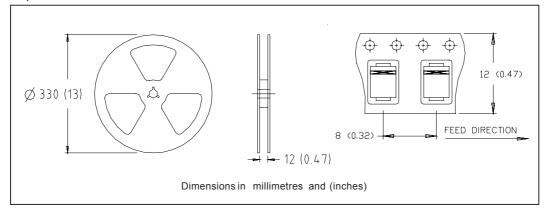
International


10MQ040NPbF

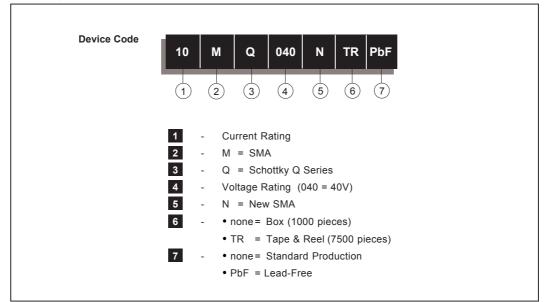
Bulletin PD-20772 rev. A 07/04

Outline Table

Marking & Identification



Document Number: 94117


www.vishay.com 5

Tape & Reel Information

Bulletin PD-20772 rev. A 07/04

Ordering Information Table

International

10MQ040NPbF

Bulletin PD-20772 rev. A 07/04

**************************************	**
 * This model has been developed by * Wizard SPICE MODEL GENERATOR (1999) 	*
(International Rectifier Corporation)	*
* Contain Proprietary Information	*
***************************************	**
* SPICE Model Diode is composed by a *	
simple diode plus paralled VCG2T *	
*****	**
SUBCKT 10MQ040N ANO CAT	
D1 ANO 1 DMOD (0.00472)	
Define diode model	
MODEL DMOD D(IS=1.29526323971343E-04A,N	
- IBV=0.260404749526768A,RS= 0.00048144,CJC	· · · · · · · · · · · · · · · · · · ·
+ VJ=1.82174923822158,XTI=2, EG=0.779470593	
Implementation of VCG2T	τ η τ
VX 1 2 DC 0V	
R1 2 CAT TRES 1E-6	
MODEL TRES RES(R=1,TC1=-43.335434265350)	
	4.190325E-03/-43.33543)*((V(2,CAT)*1E6)/(I(VX)+1E-6)-
((((((((((((((((())))())))))))))))))))	
*****	**

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 07/04

> www.vishay.com 7

Document Number: 94117

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.