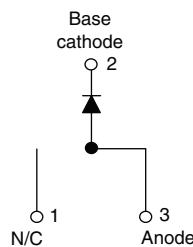


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Schottky Rectifier, 10 A

FEATURES

- 175 °C T_J operation
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified for Q101 level

DESCRIPTION

The 10TQ...S Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

PRODUCT SUMMARY	
$I_{F(AV)}$	10 A
V_R	35/45 V

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$I_{F(AV)}$	Rectangular waveform	10	A
V_{RRM}		35/45	V
I_{FSM}	$t_p = 5 \mu s$ sine	1050	A
V_F	10 Apk, $T_J = 125$ °C	0.49	V
T_J	Range	- 55 to 175	°C

VOLTAGE RATINGS				
PARAMETER	SYMBOL	10TQ035S	10TQ045S	UNITS
Maximum DC reverse voltage	V_R	35	45	V
Maximum working peak reverse voltage	V_{RWM}			

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average forward current See fig. 5	$I_{F(AV)}$	50 % duty cycle at $T_C = 151$ °C, rectangular waveform		10	A	
Maximum peak one cycle non-repetitive surge current See fig. 7	I_{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V_{RRM} applied	1050	A	
		10 ms sine or 6 ms rect. pulse		280		
Non-repetitive avalanche energy	E_{AS}	$T_J = 25$ °C, $I_{AS} = 2$ A, $L = 6.5$ mH		13	mJ	
Repetitive avalanche current	I_{AR}	Current decaying linearly to zero in 1 μs Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical		2	A	

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum forward voltage drop See fig. 1	$V_{FM}^{(1)}$	10 A	$T_J = 25 \text{ }^\circ\text{C}$	0.57	V	
		20 A		0.67		
		10 A	$T_J = 125 \text{ }^\circ\text{C}$	0.49		
		20 A		0.61		
Maximum reverse leakage current See fig. 2	$I_{RM}^{(1)}$	$T_J = 25 \text{ }^\circ\text{C}$	$V_R = \text{Rated } V_R$	2	mA	
		$T_J = 125 \text{ }^\circ\text{C}$		15		
Maximum junction capacitance	C_T	$V_R = 5 \text{ V}_{\text{DC}}$ (test signal range 100 kHz to 1 MHz) $25 \text{ }^\circ\text{C}$		900	pF	
Typical series inductance	L_S	Measured lead to lead 5 mm from package body		8.0	nH	
Maximum voltage rate of change	dV/dt	Rated V_R		10 000	V/μs	

Note

(1) Pulse width < 300 μs, duty cycle < 2 %

 THERMAL - MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	T_J, T_{Stg}		- 55 to 175	°C	
Maximum thermal resistance, junction to case	R_{thJC}	DC operation See fig. 4	2.0	°C/W	
Typical thermal resistance, case to heatsink	R_{thCS}	Mounting surface, smooth and greased	0.50		
Approximate weight			2	g	
			0.07	oz.	
Mounting torque	minimum		6 (5)	kgf · cm (lbf · in)	
	maximum		12 (10)		
Marking device		Case style D ² PAK	10TQ035S		
			10TQ045S		

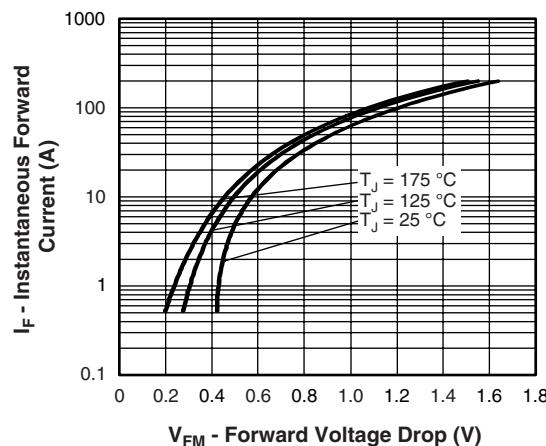


Fig. 1 - Maximum Forward Voltage Drop Characteristics

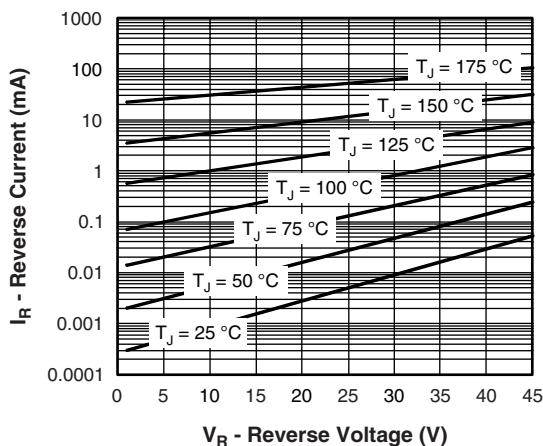


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

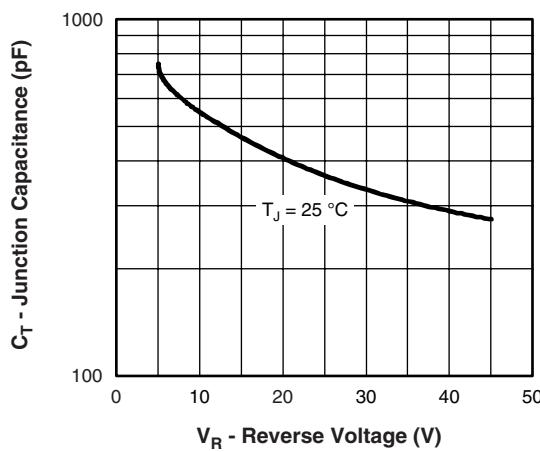
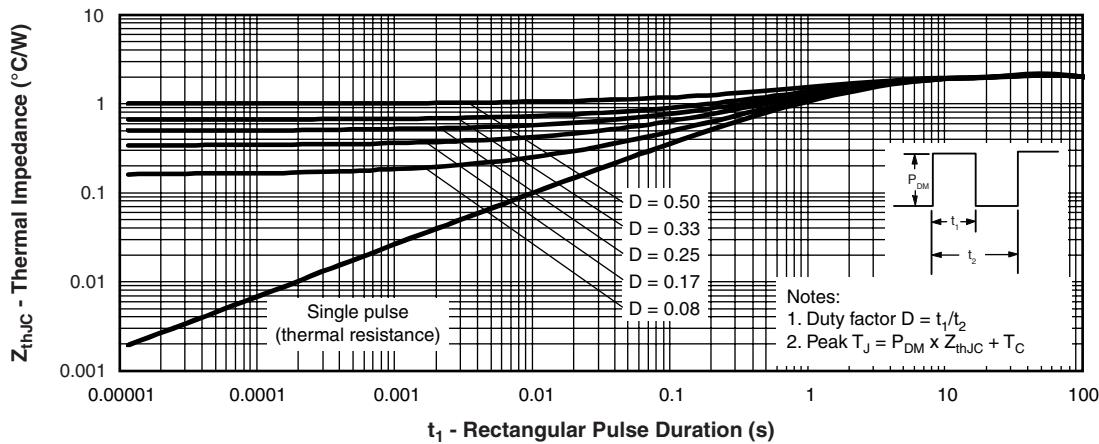



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

 Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

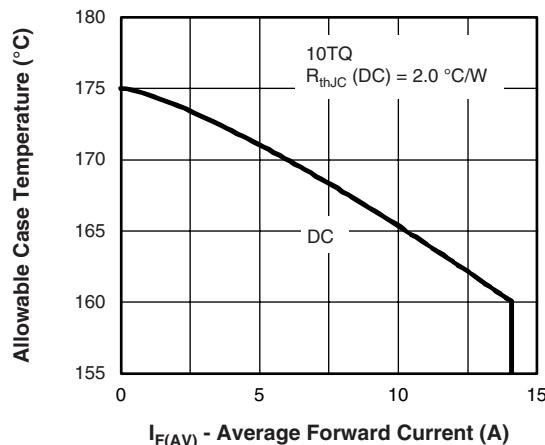


Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current

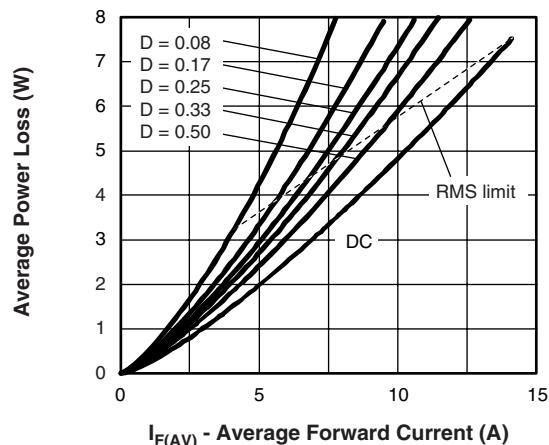


Fig. 6 - Forward Power Loss Characteristics

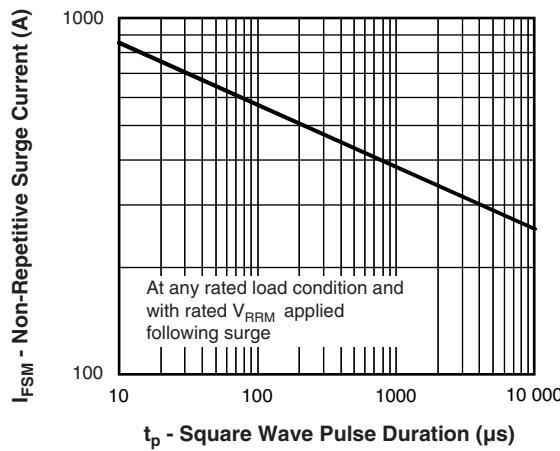


Fig. 7 - Maximum Non-Repetitive Surge Current

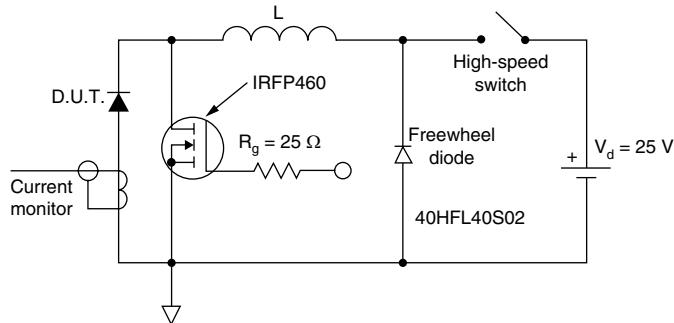


Fig. 8 - Unclamped Inductive Test Circuit

ORDERING INFORMATION TABLE

Device code	10	T	Q	045	S	TRL	-
	1	2	3	4	5	6	7

1	- Current rating (10 A)	
2	- Circuit configuration: T = TO-220	
3	- Schottky "Q" series	
4	- Voltage ratings	035 = 35 V 045 = 45 V
5	- • S = D ² PAK	
6	- • None = Tube (50 pieces) • TRL = Tape and reel (left oriented) • TRR = Tape and reel (right oriented)	
7	- • None = Standard production • PbF = Lead (Pb)-free	

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95014
Part marking information	http://www.vishay.com/doc?95008
Packaging information	http://www.vishay.com/doc?95032

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.