

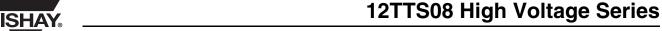
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

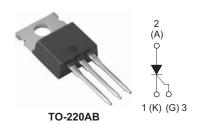
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Vishay High Power Products

Phase Control SCR, 12.5 A

PRODUCT SUMMARY			
V _T at 8 A 1.2 V			
I _{TSM}	140 A		
V _{RRM}	800 V		

DESCRIPTION/FEATURES

The 12TTS08 High Voltage Series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125 °C junction temperature.

Typical applications are in input rectification and crowbar (soft start) and these products are designed to be used with Vishay HPP input diodes, switches and output rectifiers which are available in identical package outlines.

Also available in SMD-220 package (series 12TTS..S)

This product has been designed and qualified for industrial level.

OUTPUT CURRENT IN TYPICAL APPLICATIONS					
APPLICATIONS	SINGLE-PHASE BRIDGE	THREE-PHASE BRIDGE	UNITS		
Capacitive input filter T _A = 55 °C, T _J = 125 °C, common heatsink of 1 °C/W	13.5	17	А		

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
I _{T(AV)}	Sinusoidal waveform	8	٨		
I _{T(RMS)}		12.5	Α		
V _{DRM} /V _{RRM}		800	V		
I _{TSM}		140	А		
V _T	8 A, T _J = 25 °C	1.2	V		
dV/dt		150	V/µs		
dl/dt		100	A/µs		
TJ	Range	- 40 to 125	°C		

VOLTAGE RATINGS					
PART NUMBER	V _{RRM} , MAXIMUM PEAK VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA		
12TTS08	800	800	1.0		

Document Number: 93694 Revision: 02-Jun-08

12TTS08 High Voltage Series

Vishay High Power Products Phase Control SCR, 12.5 A

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum average on-state current	I _{T(AV)}	T 100 °C 100° conduction half size ways	8	
Maximum RMS on-state current	I _{T(RMS)}	T _C = 108 °C, 180° conduction, half sine wave	12.5	
Maximum peak, one-cycle,		10 ms sine pulse, rated V_{RRM} applied, T_J = 125 $^{\circ}$ C	120	Α
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied, $T_J = 125$ °c	140	
Maximum 12t for fusion	l ² t	10 ms sine pulse, rated V_{RRM} applied, T_J = 125 °C	72	A ² s
Maximum I ² t for fusing	I-ί	10 ms sine pulse, no voltage reapplied, $T_J = 125^{\circ}$	100	A-S
Maximum I ² √t for fusing	I²√t	$t=0.1$ to 10 ms, no voltage reapplied, $T_J=125^{\circ}\text{C}$	1000	A ² √s
Maximum on-state voltage drop	V_{TM}	8 A, T _J = 25 °C	1.2	V
On-state slope resistance	r _t	T 105 °C	16.2	mΩ
Threshold voltage	V _{T(TO)}	T _J = 125 °C	0.87	V
Marian was a sand disast la also a sussant	1 /1	T _J = 25 °C	0.05	
Maximum reverse and direct leakage current	I_{RM}/I_{DM}	$T_J = 125 ^{\circ}\text{C}$ $V_R = \text{Rated } V_{RRM}/V_{DRM}$	1.0	
Typical holding current	I _H	Anode supply = 6 V, resistive load, initial $I_T = 1$ A	30	mA
Maximum latching current	ΙL	Anode supply = 6 V, resistive load	50	
Maximum rate of rise of off-state voltage	dV/dt	T _J = 25 °C	150	V/µs
Maximum rate of rise of turned-on current	dl/dt		100	A/µs

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P_{GM}		8.0	W
Maximum average gate power	P _{G(AV)}		2.0	VV
Maximum peak positive gate current	+ I _{GM}		1.5	Α
Maximum peak negative gate voltage	- V _{GM}		10	V
Maximum required DC gate current to trigger	I _{GT}	Anode supply = 6 V, resistive load, T _J = - 65 °C	20	mA
		Anode supply = 6 V, resistive load, T _J = 25 °C	15	
		Anode supply = 6 V, resistive load, T _J = 125 °C	10	
Maximum required DC gate voltage to trigger	V _{GT}	Anode supply = 6 V, resistive load, T _J = - 65 °C	1.2	
		Anode supply = 6 V, resistive load, $T_J = 25$ °C	1	.,
		Anode supply = 6 V, resistive load, T _J = 125 °C	0.7	V
Maximum DC gate voltage not to trigger	V_{GD}	T = 105 °C V = Poted value	0.2	
Maximum DC gate current not to trigger	I _{GD}	T _J = 125 °C, V _{DRM} = Rated value		mA

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical turn-on time	t _{gt}	T _J = 25 °C	0.8	
Typical reverse recovery time	t _{rr}	T 105 °C	3	μs
Typical turn-off time	tq	T _J = 125 °C	100	

12TTS08 High Voltage Series

Phase Control SCR, 12.5 A Vishay High Power Products

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 125	°C
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	1.5	
Maximum thermal resistance, junction to ambient		R _{thJA}		62	°C/W
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.5	
Approximate weight				2	g
Approximate weight				0.07	OZ.
Mounting torque ———	minimum			6 (5)	kgf · cm
	maximum			12 (10)	(lbf ⋅ in)
Marking device			Case style TO-220AB	12T	TS08

Document Number: 93694 Revision: 02-Jun-08

Vishay High Power Products Phase Control SCR, 12.5 A

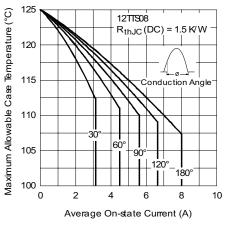


Fig. 1 - Current Ratings Characteristics

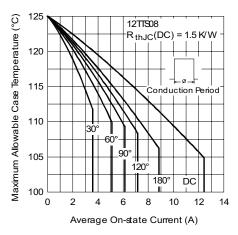


Fig. 2 - Current Ratings Characteristics

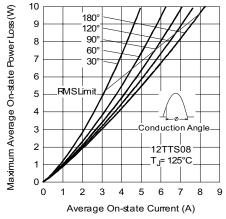


Fig. 3 - On-State Power Loss Characteristics

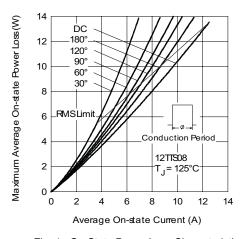


Fig. 4 - On-State Power Loss Characteristics

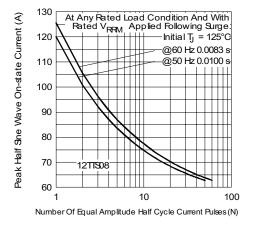


Fig. 5 - Maximum Non-Repetitive Surge Current

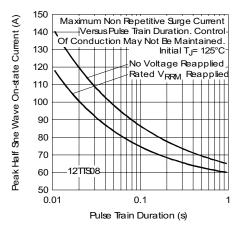


Fig. 6 - Maximum Non-Repetitive Surge Current

Phase Control SCR, 12.5 A Vishay High Power Products

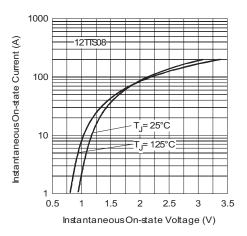


Fig. 7 - On-State Voltage Drop Characteristics

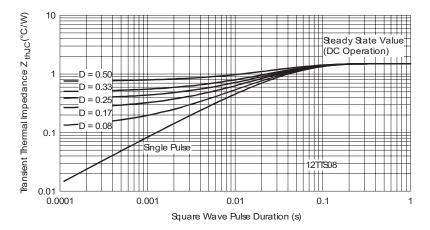
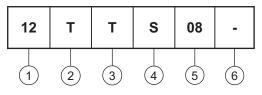


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics


12TTS08 High Voltage Series

Vishay High Power Products Phase Control SCR, 12.5 A

ORDERING INFORMATION TABLE

Device code

- Current ratings (12 = 12.5 A)

2 - Circuit configuration:

T = Single thyristor

3 - Package:

T = TO-220

4 - Type of silicon:

S = Standard recovery rectifier

5 - Voltage rating (08 = 800 V)

None = Standard production

• PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS			
Dimensions http://www.vishay.com/doc?95222			
Part marking information	http://www.vishay.com/doc?95225		

Document Number: 93694 Revision: 02-Jun-08

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com