

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

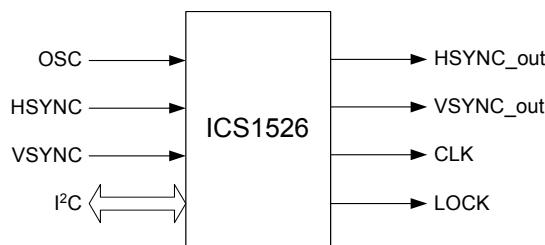
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


General Description

The ICS1526 is a low-cost, high-performance frequency generator. It is suited to general purpose phase controlled clock synthesis as well as line-locked and genlocked high-resolution video applications. Using IDT's advanced low-voltage CMOS mixed-mode technology, the ICS1526 is an effective clock synthesizer that supports video projectors and displays at resolutions from VGA to beyond XGA.

The ICS1526 offers single-ended clock outputs to 110 MHz. The HSYNC_out, and VSYNC_out pins provide the regenerated versions of the HSYNC and VSYNC inputs synchronous to the CLK output.

The advanced PLL uses its internal programmable feedback divider. The device is programmed by a standard I²C-bus™ serial interface and is available in a TSSOP16 package.

ICS1526 Functional Diagram

Features

- Lead-free packaging (Pb-free)
- Low jitter (typical 27 ps short term jitter)
- Wide input frequency range
 - 8 kHz to 100 MHz
- LVCMOS single-ended clock outputs
 - Up to 110 MHz
- Uses 3.3 V power supply
- 5 Volt tolerant Inputs (HSYNC, VSYNC)
- Coast (ignore HSYNC) capability via VSYNC pin
- Industry standard I²C-bus programming interface
- PLL Lock detection via I²C or LOCK output pin
- 16-pin TSSOP package

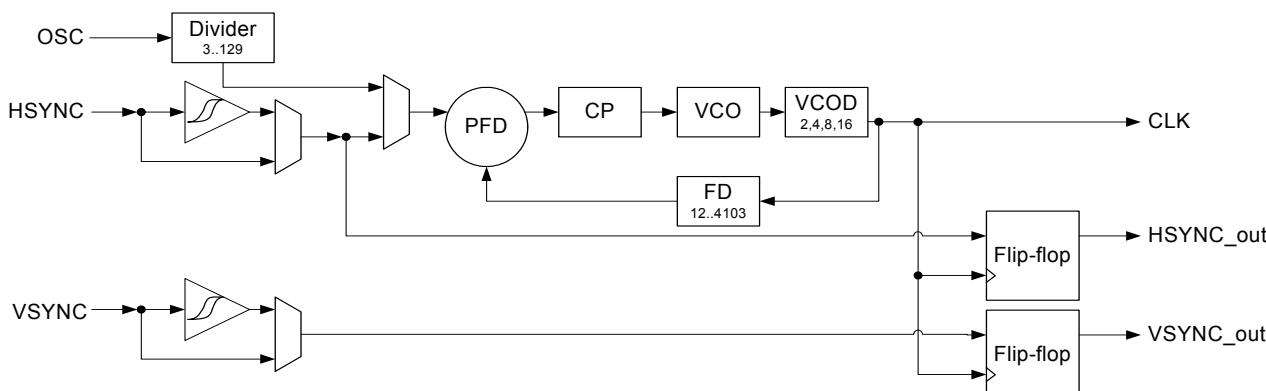
Applications

- Frequency synthesis
- LCD monitors, video projectors and plasma displays
- Genlocking multiple video subsystems

Pin Configuration (16-pin TSSOP)

VSSD	1	16	VDDD
SDA	2	15	VSSQ
SCL	3	14	VSYNC_out
VSYNC	4	13	VDDQ
HSYNC	5	12	CLK
VDDA	6	11	HSYNC_out
VSSA	7	10	LOCK
OSC	8	9	I2CADR

Section 1 Overview


The ICS1526 is a user-programmable, high-performance general purpose clock generator. It is intended for graphics system line-locked and genlocked applications and provides the clock signals required by high-performance analog-to-digital converters.

The ICS1526 has the ability to operate in line-locked mode with the HSYNC input.

1.1 Phase-Locked Loop

The phase-locked loop has a very wide input frequency range (8 kHz to 100 MHz). Not only is the ICS1526 an excellent, general purpose clock synthesizer, but it is also capable of line-locked operation. Refer to the block diagram below.

Figure 1-1 Simplified Block Diagram

Note: Polarity controls and other circuit elements are not shown in above diagram for simplicity

The heart of the ICS1526 is a voltage controlled oscillator (VCO). The VCOs speed is controlled by the voltage on the loop filter. This voltage will be described later in this section.

The VCOs clock output is first passed through the VCO Divider (VCOD). The VCOD allows the VCO to operate at higher speeds than the required output clock.

NOTE: Under normal, locked operation the VCOD has no effect on the speed of the output clocks, just the VCO frequency.

The output of the VCOD is the full speed output frequency seen on the CLK. This clock is then sent through the 12-bit internal Feedback Divider (FD). The feedback divider controls how many clocks are seen during every cycle of the input reference.

The Phase Frequency Detector (PFD) then compares the feedback to the input and controls the filter voltage by enabling and disabling the charge pump. The charge pump has programmable current drive and will source and sink current as appropriate to keep the input and the clock output aligned.

The input HSYNC and VSYNC can be conditioned by a high-performance Schmitt-trigger by sharpening the rising/falling edge.

The HSYNC_out and VSYNC_out signals are aligned with the output clock (CLK) via a set of flip flops.

1.2 Output Drivers and Logic Inputs

The ICS1526 uses low-voltage TTL (LVTTL) inputs and LVCMS outputs, operating at the 3.3 V supply voltage. The LVTTL inputs are 5 V tolerant.

The LVCMS drive resistive terminations or transmission lines.

1.3 Automatic Power-On Reset Detection

The ICS1526 has automatic power-on reset detection (POR) circuitry and it resets itself if the supply voltage drops below threshold values. No external connection to a reset signal is required.

1.4 I²C Bus Serial Interface

The ICS1526 uses a 5 volt tolerant, industry-standard I²C-bus serial interface that runs at either low speed (100 kHz) or high speed (400 kHz). The interface uses 12 word addresses for control and status: one write-only, eight read/write, and three read-only addresses.

Two ICS1526 devices can sit on the same I²C bus, each selected by the Master according to the state of the I2CADR pin. The 7-bit device address is 0100110 (binary) when I2CADR is low. The device address is 0100111 (binary) when I2CADR is high. See [Section 4, "Programming"](#)

Section 2 Pin Descriptions

Table 2-1 ICS1526 Pin Descriptions

PIN NO.	PIN NAME	TYPE	DESCRIPTION	COMMENTS	Notes
1	VSSD	POWER	Digital ground		
2	SDA	IN/OUT	Serial data	I ² C-bus	1
3	SCL	IN	Serial clock	I ² C-bus	1
4	VSYNC	IN	Vertical sync		1 & 2
5	HSYNC	IN	Horizontal sync	Clock input to PLL	1 & 2
6	VDDA	POWER	Analog supply	Power for analog circuitry	
7	VSSA	POWER	Analog ground	Ground for analog circuitry	
8	OSC	IN	Oscillator	Input from crystal oscillator package	1 & 2
9	I ² CADR	IN	I ² C device address	Chip I ² C address select	
10	LOCK	LVCMOS OUT	Lock	PLL Lock detect	
11	HSYNC_out	LVCMOS OUT	Hsync output	Schmitt-trigger filtered HSYNC realigned with the output pixel clock	
12	CLK	LVCMOS OUT	Pixel clock output	LVCMOS driver for full speed clock	
13	VDDQ	POWER	Output driver supply	Power for output drivers	
14	VSYNC_out	LVCMOS OUT	Vsync output	Schmitt-trigger filtered VSYNC realigned with the output pixel clock	
15	VSSQ	POWER	Output driver ground	Ground for output drivers	
16	VDDD	POWER	Digital supply	Power for digital sections	

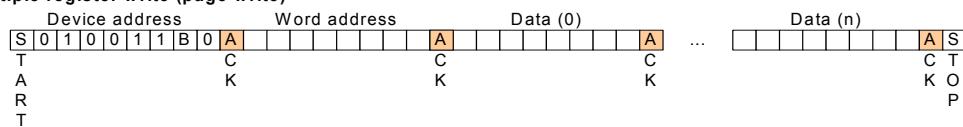
Notes: 1. These LVTTL inputs are 5 V tolerant.

2. Connect to ground if unused.

Section 3 Register map summary

Word Address	Name	Access	Bit Name	Bit#	Reset Value	Description
00h	Input Control	R / W	CPen	0	1	Charge Pump Enable 0=External Enable via VSYNC, 1=Always Enabled
			VSYNC_Pol	1	0	VSYNC Polarity (Charge Pump Enable) Requires 00h:0=0 0=Coast (charge pump disabled) while VSYNC low, 1=Coast (charge pump disabled) while VSYNC high
			Hsync_Pol	2	0	Hsync Polarity 0=Rising Edge, 1=Falling Edge
			Reserved	3	0	Reserved
			Reserved	4	0	Part requires a 0 for correct operation
			Reserved	5	0	Reserved
			EnPLS	6	1	Enable PLL Lock Output 0=Disable, 1=Enable
			Reserved	7	0	Reserved
01h	Loop Control*	R / W	ICP0-2	0-2		ICP (Charge Pump Current) Bit 2,1,0 = {000 = 1 μ A, 001 = 2 μ A, 010 = 4 μ A... 110 = 64 μ A, 111 = 128 μ A}. Increasing the Charge Pump Current makes the loop respond faster, raising the loop bandwidth. The typical value when using the internal loop filter is 011.
			Reserved	3		Reserved
			VCOD0-1	4-5		VCO Divider Bit 5,4 = {00 = $\div 2$, 01 = $\div 4$, 10 = $\div 8$, 11 = $\div 16$ }
			Reserved	6-7		Reserved
02h	FdBk Div 0*	R / W	FBD0-7	0-7		Feedback Divider LSBs (bits 0-7)
03h	FdBk Div 1*	R / W	FBD8-11	0-3		Feedback Divider MSBs (bits 8-11) Divider setting = 12-bit word + 8 Minimum 12 = 00000000100 Maximum 4103 = 111111111111
			Reserved	4-7		Reserved
04h	Reserved		Reserved	0-7	0	Reserved
05h	Schmitt-trigger*	R / W	Schmitt control	0	1	Schmitt-trigger control 0=Schmitt-trigger, 1=No Schmitt-trigger
			Metal_Rev	1-7	0	Metal Mask Revision Number
06h	Output Enables	R / W	Reserved	0	0	Reserved
			OE	1	0	Output Enable for CLK, HSYNC_out, VSYNC_out 0=High Impedance (disabled), 1=Enabled
			Reserved	2-7	0	Reserved

Word Address	Name	Access	Bit Name	Bit#	Reset Value	Description	
07h	Osc_Div	R / W	Osc_Div 0-6	0-6	0	Osc Divider modulus Minimum 3 =0000001 binary, Maximum 129 = 1111111 binary Divider setting = 7-bit word + 2	
			In-Sel	7	0	Input Select 0=OSC Input, 1=Hsync Input, OSC input clock must be present to select OSC input	
08h	Reset	Write	PLL	0-7	x	Writing 5Ah resets PLL and commits values written to word addresses 01h-03h and 05h	
09-0Fh	Reserved	Read	Reserved	0-7		Reserved	
10h	Chip Ver	Read	Reserved	0-7		Reserved	
11h	Chip Rev	Read	Chip Rev	0-7	01	Reserved	
12h	Rd_Reg	Read	Reserved	0	N/A	Reserved	
			PLL_Lock	1	N/A	PLL Lock Status 0=Unlocked, 1=Locked	
			Reserved	2-7	0	Reserved	


*. Written values to these registers do not take effect immediately, but require a commit via register 08h

Section 4 Programming

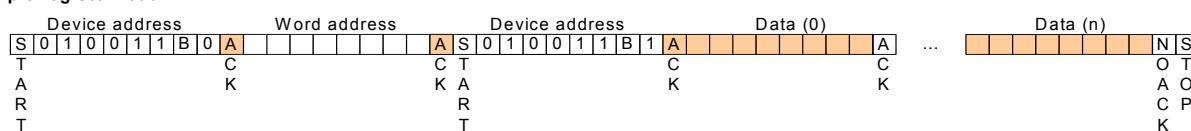
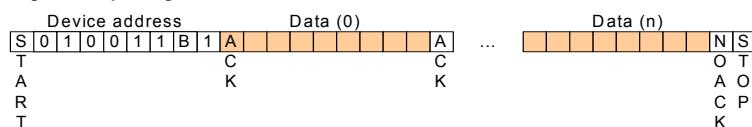

4.1 Industry-Standard I²C Serial Bus: Data Format

Figure 4-1 ICS1526 Data Format for I²C 2-Wire Serial Bus


Single/multiple register write (page write)

Single/multiple register read

Sequential single/multiple register read

Master drives line

Slave drives line

Notes:

The ICS1526 uses 16-byte pages (00h-0Fh is the first page, 10h-1Fh is the second page). Writing or reading beyond the end of page yields undefined results.

The ICS1526 has a device address of 010011B, where B is the state of the I2CADR pin.

Section 5 AC/DC Operating Conditions

5.1 Absolute Maximum Ratings

Table 5-1 lists absolute maximum ratings for the ICS1526. Stresses above these ratings can cause permanent damage to the device. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the ICS1526 at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Table 5-1 ICS1526 Absolute Maximum Ratings

Item	Rating
VDD, VDDA, VDDQ (measured to VSS)*	4.3 V
Digital Inputs	VSS -0.3 V to 5.5 V
Analog Inputs	VSS -0.3 V to 6.0 V
Analog Outputs	VSSA -0.3 V to VDDA +0.3 V
Digital Outputs	VSSQ -0.3 V to VDDQ +0.3 V
Storage Temperature	-65°C to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C
ESD Susceptibility**	> 2 KV**

*. Measured with respect to VSS. During normal operations, the VDD supply voltage for the ICS1526 must remain within the recommended operating conditions.

**. Electrostatic-sensitive devices. Do not open or handle except in a static-free workstation.

Table 5-2 Environmental Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature (commercial)	0	–	+70	° C
Ambient Operating Temperature (industrial)	-40	–	+85	° C
Power Supply Voltage	+3.0	+3.3	+3.6	V

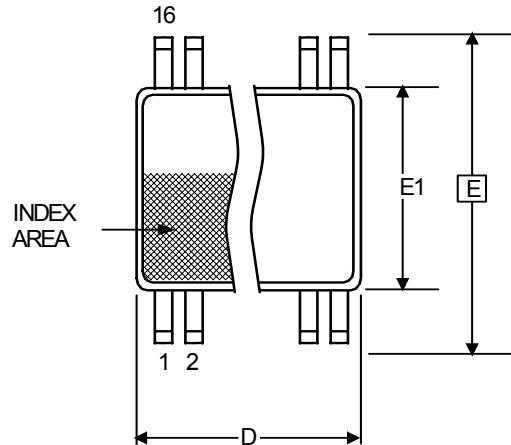
Table 5-3 DC Characteristics

Parameter	Symbol	Conditions	Min.	Max.	Units
Digital Supply Current	IDDD	VDDD = 3.6 V	-	25	mA
Output Driver Supply Current	IDDQ	VDDD = 3.6 V No drivers enabled	-	6	mA
Analog Supply Current	IDDA	VDDA = 3.6 V	-	5	mA
Power consumption				300	mW
Power-On-Reset (POR) Threshold		VSS		1.8	V

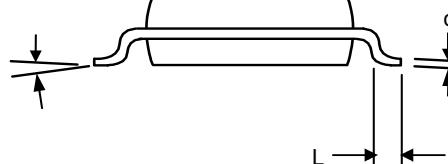
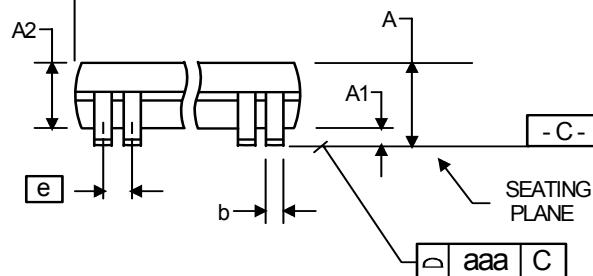
Table 5-4 AC Characteristics

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
General						
VCO Frequency	f_{VCO}	40		400	MHz	Commercial temp. only
		40		350	MHz	Industrial temp.
VCO Gain	K		165		MHz/V	
AC Inputs						
OSC Input Frequency	f_{osc}	0.02		100	MHz	
Analog Input (HSYNC/VSYNC)						
HSYNC Input Frequency	f_{HSYNC}	8		10,000	kHz	
VSYNC Input Frequency	f_{VSYNC}	30		120	Hz	
Input High Voltage	V_{IH}	1.7		5.5	V	
Input Low Voltage	V_{IL}	VSS - 0.3		1.1	V	
Input Hysteresis		0.2		0.8	V	Schmitt trigger active
SDA, SCL, OSC Digital Inputs						
Input High Voltage	V_{IH}	2		5.5	V	
Input Low Voltage	V_{IL}	VSS - 0.3		0.8	V	
I²C ADDR Digital Input						
Input High Voltage	V_{IH}	2		VDD+0.3	V	
Input Low Voltage	V_{IL}	VSS - 0.3		0.8	V	
SDA Digital Output						
SDA Output Low Voltage	V_{OL}			0.4	V	I _{OUT} = 3 mA
SDA Output High Voltage	V_{OH}			6.0	V	Determined by external R _{set} resistor
LVC MOS Outputs (CLK, HSYNC_out, VSYNC_out, LOCK)						
Output Frequency	F_s	2.5		110	MHz	V _{DDD} = 3.3 V
Duty Cycle	S_{DC}	45	50	55	%	2
Jitter, STJ, RMS	STJ		0.027		ns	30 kHz input to 50 MHz output
Jitter, STJ, pk-pk	STJ		0.200		ns	
Jitter, Input-Output	IOJ		2.500		ns	HSYNC in to CLK out
HSYNC to HSYNC_out propagation delay (without Schmitt trigger)			2	9	ns	1
HSYNC to HSYNC_out propagation delay (with Schmitt-trigger)			6	10	ns	1
CLK to HSYNC_out/ VSYNC_out skew				1.0	ns	
Clock/ HSYNC_out/ VSYNC_out Transition Time - Rise	T_{CR}		1.0	1.5	ns	2

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Clock/ HSYNC_out/ VSYNC_out Transition Time - Fall	T_{CF}		1.0	1.5	ns	2
LOCK Transition Time - Rise	T_{LR}			3.0	ns	2
LOCK Transition Time - Fall	T_{LF}			2.0	ns	2


Note 1—Measured between chosen edge of HSYNC (00h:2) and rising edge of output

Note 2—Measured at 110 MHz, 3.3 VDC, 25°C, 15 pF, unterminated



Section 6 Package Outline and Package Dimensions

16-pin TSSOP 4.40 mm body, 0.65 mm pitch

Package dimensions are kept current with JEDEC Publication No. 95

Symbol	Millimeters		Inches	
	Min	Max	Min	Max
A	--	1.20	--	0.047
A1	0.05	0.15	0.002	0.006
A2	0.80	1.05	0.032	0.041
b	0.19	0.30	0.007	0.012
C	0.09	0.20	0.0035	0.008
D	4.90	5.1	0.193	0.201
E	6.40 BASIC		0.252 BASIC	
E1	4.30	4.50	0.169	0.177
e	0.65 Basic		0.0256 Basic	
L	0.45	0.75	0.018	0.030
α	0°	8°	0°	8°
aaa	--	0.10	--	0.004

Section 7 Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
1526GLF	1526GLF	Tubes	16-pin TSSOP	0 to +70° C
1526GLFTR	1526GLF	Tape & Reel	16-pin TSSOP	0 to +70° C
1526GILF	1526GILF	Tubes	16-pin TSSOP	-40 to +85° C
1526GILFTR	1526GILF	Tape & Reel	16-pin TSSOP	-40 to +85° C

"LF" denotes Pb (lead) free package.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.