

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

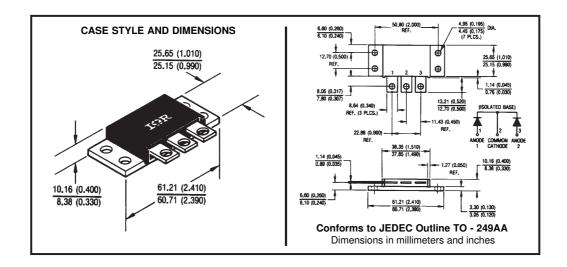
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

160CMQ... SERIES

SCHOTTKY RECTIFIER

160 Amp


Major Ratings and Characteristics

Characteristics		160CMQ	Units
I _{F(AV)}	Rectangular waveform	160	А
V _{RRM} range		35 to 45	V
I _{FSM}	@ tp = 5 μs sine	6400	А
V _F	@ 80 Apk, T _J = 125°C (per leg)	0.60	V
Т	range	-55 to 150	°C

Description/Features

The 160CMQ isolated, center tap Schottky rectifier module series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150°C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

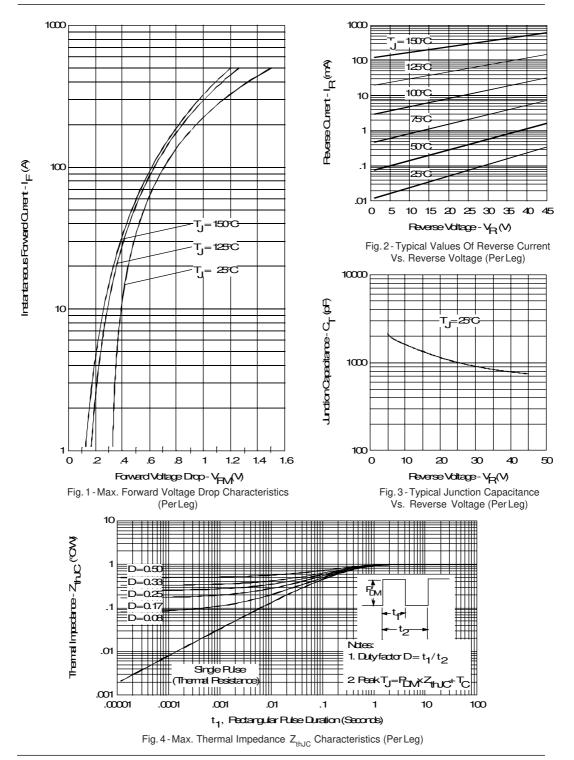
- 150° C T_J operation
- Isolated heatsink
- Center tap module
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Low profile, high current package

Voltage Ratings

Part number	160CMQ035	160CMQ040	160CMQ045
V _R Max. DC Reverse Voltage (V)	05	40	45
V _{RWM} Max. Working Peak Reverse Voltage (V)	35	40	45

Absolute Maximum Ratings

Parameters		160CMQ	Units	Conditions	
I _{F(AV)} Max. Average Forward Current		160	Α	50% duty cycle @ T _C = 69 °C, rectangular wave form	
, ,	*See Fig. 5				
I _{FSM}	Max. Peak One Cycle Non-Repetitive	6400	Α	5μs Sine or 3μs Rect. pulse Following any rated load condition and with	
	Surge Current (Per Leg) *See Fig. 7	750	_ A	10ms Sine or 6ms Rect. pulse rated V _{RRM} applied	
E _{AS} Non-Repetitive Avalanche Energy (Per Leg)		108	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 16 \text{Amps}, L = 0.84 \text{mH}$	
I _{AR} Repetitive Avalanche Current		16	Α	Currentdecayinglinearlytozeroin1 µsec	
	(Per Leg)			Frequency limited by $T_J max. V_A = 1.5 \times V_R$ typical	


Electrical Specifications

Parameters		160CMQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop	0.64	V	@ 80A	T,= 25 °C
1 101	(Per Leg) * See Fig. 1 (1)	0.86	V	@ 160A	1 _J = 23 0
		0.60	V	@ 80A	T 105 °C
		0.76	V	@ 160A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	5	mA	T _J = 25 °C	$V_p = \text{rated } V_p$
	(Per Leg) * See Fig. 2 (1)	200	mA	T _J = 125 °C	V _R = rated V _R
C _T	Max. Junction Capacitance (Per Leg)	2600	рF	V _R = 5V _{DC} , (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance (Per Leg)	8.0	nH	Measured from terminal hole to terminal hole	
dv/dt	$\begin{array}{l} \text{Max. Voltage Rate of Change} \\ \text{(Rated V}_{\text{R}}) \end{array}$	10,000	V/ μs		

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		160CMQ	Units	Conditions
T _J	T, Max. Junction Temperature Range		-55 to 150	°C	
T _{stg}	Max. Storage Temperature Ra	inge	-55 to 150	°C	
R _{thJC}	Max. Thermal Resistance June to Case (Per Leg)	ction	1.0	°C/W	DC operation *See Fig. 4
R _{thJC}	Max. Thermal Resistance June to Case (Per Package)	ction	0.50	°C/W	DC operation
R _{thCS}	R _{thCS} Typical Thermal Resistance, Case to Heatsink		0.10	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		58 (2.0)	g (oz.)	
Т	Mounting Torque	Min.	40 (35)	Kg-cm	
		Max.	58 (50)	(lbf-in)	
Case Style		TO-249	9AA	JEDEC	

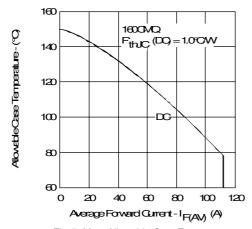


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

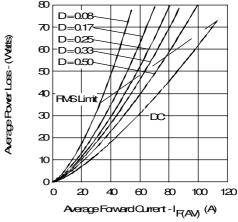


Fig. 6 - Forward Power Loss Characteristics (PerLeg)

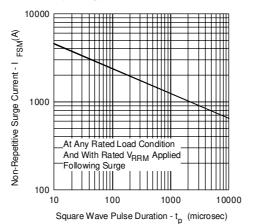


Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

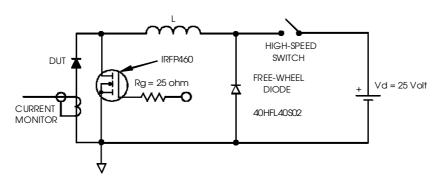


Fig. 8 - Unclamped Inductive Test Circuit