: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Power
 Diode Modules

$\mathbf{V}_{\text {RSM }}$ $V_{\text {DSM }}$ V	$\mathbf{V}_{\text {RRM }}$ $V_{\text {DRM }}$	Type
V		
1300	1200	MDO 500-12N1
1500	1400	MDO 500-14N1
1700	1600	MDO 500-16N1
1900	1800	MDO 500-18N1
2100	2000	MDO 500-20N1
2300	2200	MDO 500-22N1

Symbol Test Conditions

Maximum Ratings

$\begin{aligned} & \mathrm{I}_{\text {FRMS }} \\ & \mathrm{I}_{\text {FAVM }} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{vJM}} \\ & \mathrm{~T}_{\mathrm{C}}=85^{\circ} \mathrm{C} ; 180^{\circ} \text { sine } \end{aligned}$		880 560	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{T}_{\mathrm{V},}=45^{\circ} \mathrm{C}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	15000	A
	$V_{R}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	16000	A
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	13000	A
	$V_{R}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	14400	A
$\mathbf{I}^{2} \mathbf{t}$	$\mathrm{T}_{\mathrm{V}, \mathrm{J}}=45^{\circ} \mathrm{C}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	1125000	$A^{2} \mathrm{~S}$
	$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	1062000	$A^{2} \mathrm{~S}$
	$\mathrm{T}_{\mathrm{V},}=\mathrm{T}_{\mathrm{VJM}}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$	845000	$A^{2} \mathrm{~S}$
	$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$	813000	$A^{2} \mathrm{~S}$
T_{v}			-40... 140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vJM }}$			140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$			-40... 125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	50/60 Hz, RMS	$t=1$ min	3000	V
	$\mathrm{I}_{\text {ISOL }} \leq 1 \mathrm{~mA}$	$\mathrm{t}=1 \mathrm{~s}$	3600	V~
$M_{\text {d }}$	Mounting torque (M6)		4.5-7/40-62	Nm/lb.in.
	Terminal connection torque (M8)		11-13/97-115	Nm/lb.in.
Weight	Typical including screws		650	g

Symbol	Test Conditions	Characteristic Values	
$\mathbf{l}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	30	mA
\mathbf{V}_{F}	$\mathrm{I}_{\mathrm{F}}=1200 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	1.3	V
$\mathbf{V}_{\mathrm{T} 0}$	For power-loss calculations only $\left(\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}}\right)$	0.8	V
$\mathbf{r}_{\mathbf{T}}$		0.38	$\mathrm{~m} \Omega$
$\mathbf{R}_{\text {thJc }}$	DC current	0.072	$\mathrm{~K} / \mathrm{W}$
$\mathbf{R}_{\text {thJK }}$	DC current	0.096	$\mathrm{~K} / \mathrm{W}$
$\mathbf{d}_{\mathbf{s}}$	Creeping distance on surface	21.7	mm
$\mathbf{d}_{\mathbf{A}}$	Creepage distance in air	9.6	mm
\mathbf{a}	Maximum allowable acceleration	50	$\mathrm{~m} / \mathrm{s}^{2}$

[^0]```
I FRMs = 880 A
I FAVM}=560
V RRM = 1200-2200 V
```



Features

- International standard package
- Direct copper bonded $\mathrm{Al}_{2} \mathrm{O}_{3}$-ceramic with copper base plate
- Planar passivated chips
- Isolation voltage 3600 V ~
- UL registered E 72873


## Applications

- Supplies for DC power equipment
- DC supply for PWM inverter
- Field supply for DC motors
- Battery DC power supplies


## Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits

Dimensions in mm (1 mm = 0.0394")



Fig. 1 Surge overload current $I_{\text {FSM }}$ : Crest value, t: duration


Fig. $2 I^{2} t$ versus time ( $1-10 \mathrm{~ms}$ )




Fig. 3 Maximum forward current at case temperature

Fig. 4 Power dissipation versus forward current and ambient temperature

Fig. 5 Single phase rectifier bridge: Power dissipation versus direct output current and ambient temperature
$R=$ resistive load
$\mathrm{L}=$ inductive load

## MDO 500





Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 7 Transient thermal impedance junction to case
$\mathrm{R}_{\text {thJc }}$ for various conduction angles d :

| d | $\mathrm{R}_{\text {thJc }}(\mathrm{K} / \mathrm{W})$ |
| :---: | :--- |
| DC | 0.072 |
| $180^{\circ}$ | 0.0768 |
| $120^{\circ}$ | 0.081 |
| $60^{\circ}$ | 0.092 |
| $30^{\circ}$ | 0.111 |

Constants for $Z_{\text {thJc }}$ calculation:

| $i$ | $R_{\text {thi }}(\mathrm{K} / \mathrm{W})$ | $\mathrm{t}_{\mathrm{i}}(\mathrm{s})$ |
| :--- | :--- | :--- |
| 1 | 0.0035 | 0.0054 |
| 2 | 0.0186 | 0.098 |
| 3 | 0.0432 | 0.54 |
| 4 | 0.0067 | 12 |

Fig. 8 Transient thermal impedance junction to heatsink
$\mathrm{R}_{\text {thJk }}$ for various conduction angles d :

| d | $\mathrm{R}_{\text {thJK }}(\mathrm{K} / \mathrm{W})$ |
| :---: | :--- |
| DC | 0.096 |
| $180^{\circ}$ | 0.1 |
| $120^{\circ}$ | 0.105 |
| $60^{\circ}$ | 0.116 |
| $30^{\circ}$ | 0.135 |

Constants for $Z_{\text {thJk }}$ calculation:

| $i$ | $R_{\text {thi }}(\mathrm{K} / \mathrm{W})$ | $\mathrm{t}_{\mathrm{i}}(\mathrm{s})$ |
| :--- | :--- | :--- |
| 1 | 0.0035 | 0.0054 |
| 2 | 0.0186 | 0.098 |
| 3 | 0.0432 | 0.54 |
| 4 | 0.0067 | 12 |
| 5 | 0.024 | 12 |


[^0]:    Data according to IEC 60747 and refer to a single diode unless otherwise stated.
    IXYS reserves the right to change limits, test conditions and dimensions

