

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

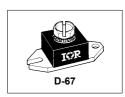
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

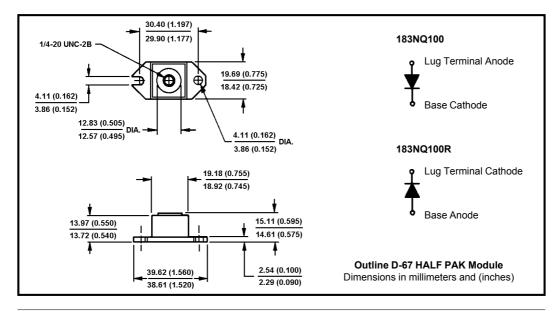


International TOR Rectifier

183NQ...(R) SERIES

SCHOTTKY RECTIFIER

180 Amp


Major Ratings and Characteristics

Chai	racteristics	183NQ	Units
I _{F(AV)}	Rectangular waveform	180	А
V _{RRM}	range	80 to 100	V
I _{FSM}	@ tp = 5 µs sine	22,000	Α
V _F	@180Apk, T _J =125°C	0.75	V
T _J	range	- 55 to 175	°C

Description/ Features

The 183NQ high current Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 175° C T_J operation
- Unique high power, Half-Pak module
- Replaces three parallel DO-5's
- Easier to mount and lower profile than DO-5's
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

International Rectifier

Voltage Ratings

Part number	183NQ080	183NQ090	183NQ100
V _R Max. DC Reverse Voltage (V)	00	00	400
V _{RWM} Max. Working Peak Reverse Voltage (V)	80	90	100

Absolute Maximum Ratings

	Parameters	183NQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current *See Fig. 5	180	Α	50% duty cycle @ T _C = 116° C, rectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	22,000	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current * See Fig. 7	1550		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-RepetitiveAvalancheEnergy	15	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1 \text{Amps}, L = 30 \text{mH}$	
I _{AR}	Repetitive Avalanche Current	1	Α	Current decaying linearly to zero in 1 µsec	
"				Frequency limited by T_J max. V_J	a=1.5xV _R typical

Electrical Specifications

Parameters		183NQ	Units	Conditions		
V _{FM}	Max. Forward Voltage Drop (1)	0.95	V	@ 180A	T = 25 °C	
	* See Fig. 1	1.14	V	@ 360A	$T_J = 25 ^{\circ}\text{C}$	
		0.75	V	@ 180A	T _. = 125 °C	
		0.89	V	@ 360A	1 ₃ = 125 C	
I _{RM}	Max. Reverse Leakage Current (1)	4.5	mA	T _J = 25 °C	V = rated V	
	* See Fig. 2	60	mA	T _J = 125 °C	V_R = rated V_R	
C _T	Max. Junction Capacitance	4150	pF	$V_R = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25 °C		
L _s	Typical Series Inductance	6.0	nΗ	From top of terminal hole to mounting plane		
dv/dt	dv/dt Max. Voltage Rate of Change		V/ µs			
	(Rated V _R)					

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters		183NQ	Units	Conditions
T _J	Max. Junction Temperature Range		-55 to 175	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 175	°C	
R _{thJC}			0.30	°C/W	DCoperation *See Fig. 4
R _{thCS}	Typical Thermal Resistance, Case to Heatsink		0.15	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		25.6(0.9)	g(oz.)	
Т	Mounting Torque	Min.	40 (35)		Non-lubricated threads
		Max.	58 (50)	Kg-cm (lbf-in)	
	Terminal Torque	Min.	58 (50)		
		Max.	86 (75)		
	CaseStyle			K Modu	le

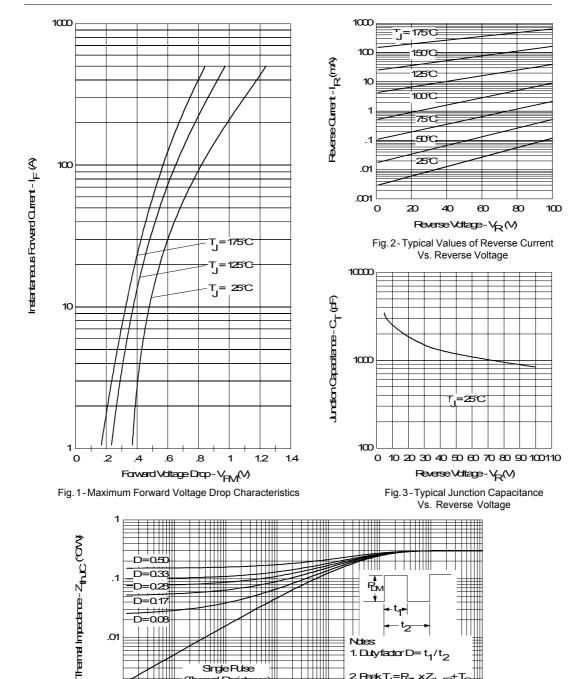


Fig. 4 - Maximum Thermal Impedance $\, Z_{thJC} \,$ Characteristics

t₁, Redangular Pulse Duration (Seconds)

.01

(Thermal Resistance)

.0001

.001 .00001 Notes:

10

100

Bulletin PD-2.256 rev. B 05/02

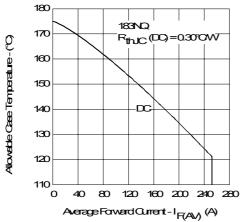


Fig. 5 - Maximum Allowable Case Temperature
Vs. Average Forward Current

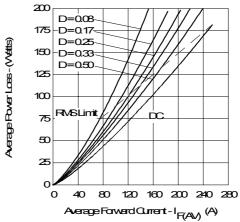


Fig. 6-Forward Power Loss Characteristics

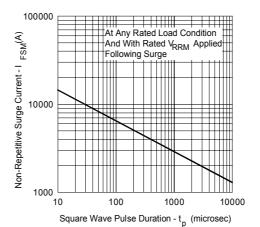


Fig. 7 - Maximum Non-Repetitive Surge Current

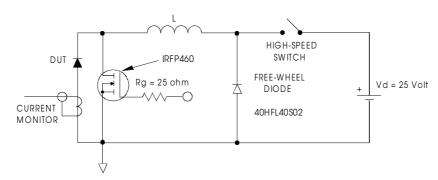


Fig. 8 - Unclamped Inductive Test Circuit

183NQ... Series

Bulletin PD-2.256 rev. B 05/02

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 05/02