

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Silicon Power Rectifier 1N3765 - 1N3768

Notes:

- 1. Full threads within 2 1/2 threads
- 2. Standard Polarity: Stud is Cathode Reverse Polarity: Stud is Anode

Dim. Inches		Millimeter			
	Minimum	Maximum	Minimum	Maximun	n Notes
Α					1/4-28
В	.667	.687	16.95	17.44	.,
С		.793		20.14	
D		1.00		25.40	
Ε	.422	.453	10.72	11.50	
F	.115	.200	2.92	5.08	
G		.450		11.43	
Н	.220	.249	5.59	6.32	1
J	.250	.375	6.35	9.52	
K	.156		3.97		
М		.667		16.94	Dia
N		.080		2.03	
Р	.140	.175	3.56	4.44	Dia

D0203AB (D0-5)

Peak		
Reverse Voltage		
50V		
100V		
150V		
200V		
300V		
400V		
500V		
600V		
700V		
800V		
900V		
1000V		
to Part Number		

- Glass Passivated Die
- 800A surge rating
- Glass to metal construction
- VRRM to 1000V
- Low cost Non-RoHS package

Electrical Characteristics

Average forward current Maximum surge current Max 12 t for fusing Max peak forward voltage Max peak reverse current Max peak reverse current

Max Recommended Operating Frequency

IF(AV) 40 Amps IFSM 800 Amps 12t 2600 A2s VFM 1.19 Volts RM 10 µA ¹RM 2.0 mA 10kHz

TC = 146°C, half_sine wave, $R\Theta JC = 1.25$ °C/W 8.3ms, half sine, $T_J = 200^{\circ}C$

 $^{1}FM = 90A: ^{T}J = 25^{\circ}C^{*}$ $V_{RRM,TJ} = 25$ °C V_{RRM} , $T_{J} = 150$ °C

*Pulse test: Pulse width 300 µsec. Duty cycle 2%

Thermal and Mechanical Characteristics

Storage temperature range Operating junction temp range Maximum thermal resistance Mounting torque Weight

TSTG ΤJ R_{OJC} -65°C to 200°C -65°C to 200°C 1.25°C/W Junction to Case 25-30 inch pounds

.5 ounces (14 grams) typical

1N1183-1N1190, 1N3765-1N3768

Figure 1 Typical Forward Characteristics

Figure 2 Typical Reverse Characteristics

Figure 3 Forward Current Derating

Figure 4
Maximum Forward Power Dissipation

Figure 5 Transient Thermal Impedance

