Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China SANTA ANA. CA 1N4896 thru 1N4915A SCOTTSDALE, AZ For more information call: (602) 941-6300 ### **FEATURES** ZENER VOLTAGE 12.8V • TEMPERATURE COEFFICIENT RANGE: 0.01%/°C to 0.001%/°C • No YIELDS MAXIMUM-RMS NOISE FOR ANY BANDWIDTH ## **MAXIMUM RATINGS** Junction and Storage Temperatures: -65°C to +175°C DC Power Dissipation: 400 mW Power Derating: 3.20 mW/°C above 50°C #### * ELECTRICAL CHARACTERISTICS @ 25°C, unless otherwise specified | JEDEC
Type
Number | TEST
CURRENT
Izr
(Note 1 & 5) | MAX, VOLTAGE CHANGE WITH TEMPERATURE \$\Delta V_{27}\$ (Note 2 & 5) | TEMPERATURE
RANGE | EFFECTIVE TEMPERATURE COEFFICIENT | MAXIMUM DYNAMIC IMPEDANCE Z _{ZT} (Note 4) | MAXIMUM
NOISE
DENSITY
No | |--|--|--|--|-----------------------------------|--|--------------------------------------| | | mA | VOLTS | °C | (Note 3)
± %/°C | OHMS | μV/√ cps | | 1N4896
1N4896A
1N4897
1N4897A | 0.5
0.5
0.5
0.5 | 0.096
0.198
0.048
0.099 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.01
0.01
0.005
0.005 | 400
400
400
400
400 | 0.8
0.8
0.8
0.8 | | 1N4898
1N4898A
1N4899
1N4899A | 0.5
0.5
0.5
0.5 | 0.019
0.040
0.010
0.020 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.002
0.002
0.001
0.001 | 400
400
400
400 | 0.8
0.8
0.8
0.8 | | 1N4900
1N4900A
1N4901
1N4901A | 1.0
1.0
1.0
1.0 | 0.096
0.198
0.048
0.099 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.01
0.01
0.005
0.005 | 200
200
200
200
200 | 0.4
0.4
0.4
0.4 | | 1N4902
1N4902A
1N4903
1N4903A | 1.0
1.0
1.0
1.0 | 0.019
0.040
0.010
0.020 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.002
0.002
0.001
0.001 | 200
200
200
200
200 | 0.4
0.4
0.4
0.4 | | 1N4904
1N4904A
1N4905
1N4905A | 2.0
2.0
2.0
2.0 | 0.096
0.198
0.048
0.099 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.01
0.01
0.005
0.005 | 100
100
100
100 | 0.25
0.25
0.25
0.25 | | 1N4906
1N4906A
1N4907
1N4907A | 2.0
2.0
2.0
2.0 | 0.019
0.040
0.010
0.020 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.002
0.002
0.001
0.001 | 100
100
100
100 | 0.25
0.25
0.25
0.25 | | 1N4908
1N4908A
1N4909
1N4909A | 4.0
4.0
4.0
4.0 | 0.096
0.198
0.048
0.099 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.01
0.01
0.005
0.005 | 50
50
50
50 | 0.22
0.22
0.22
0.22 | | 1N4910
1N4910A
1N4911
1N4911A | 4.0
4.0
4.0
4.0 | 0.019
0.040
0.010
0.020 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.002
0.002
0.001
0.001 | 50
50
50
50 | 0.22
0.22
0.22
0.22 | | 1N4912
1N4912A
1N4913
1N4913A | 7.5
7.5
7.5
7.5 | 0.096
0.198
0.048
0.099 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.01
0.01
0.005
0.005 | 25
25
25
25
25 | 0.20
0.20
0.20
0.20 | | 1N4914
1N4914A
1N4915
1N4915A | 7.5
7.5
7.5
7.5 | 0.019
0.040
0.010
0.020 | +25 to +100
-55 to +100
+25 to +100
-55 to +100 | 0.002
0.002
0.001
0.001 | 25
25
25
25
25 | 0.20
0.20
0.20
0.20
0.20 | 12.8 VOLT LOW NOISE TEMPERATURE COMPENSATED ZENER REFERENCE DIODES #### MECHANICAL CHARACTERISTICS CASE: Hermetically sealed glass case. DO-7. FINISH: All external surfaces are corrosion resistant and leads solderable. THERMAL RESISTANCE: 300°C/W (Typical) junction to lead at 0.375-inches from body. POLARITY: Diode to be operated with the banded end positive with respect to the opposite end. WEIGHT: 0.2 grams. MOUNTING POSITION: Any. # 1N4896 thru 1N4915A **NOTE 1** Nominal voltage for all types is 12.8 Volts $\pm 5\%$. **NOTE 2** Referred to as the 'box' measurement method, the ΔV_{ZT} is the maximum voltage variance that will occur as the voltage is scanned thru all temperatures between the temperature range limits. **NOTE 3** The effective temperature coefficients are tabulated in %/°C primarily for information only since temperature compensated diodes inherently have a non-linear voltage-temperature characteristic. **NOTE 4** The dynamic Zener impedance Z_{ZT} is derived from the resulting a.c. voltage developed when a 60 cps, rms a.c. current equal to 10% of the D.C. Zener current I_{ZT} is superimposed on I_{ZT} NOTE 5 Voltage measurements to be performed 15 seconds after application of DC current. **NOTE 6** To specify radiation hardened devices, use "RH" prefix instead of "IN", i.e. RH4896A instead of IN4896A. NOTE 7 Consult factory for TX, TXV or JANS equivalent SCDs. Noise Density (N_D) is specified in Microvolts-rms per square root cycle. Actual measurement is performed using a 1 to 3 KHz frequency bandpass at the Zener test current (I_{ZT}) @ 25°C ambient temperature. FIGURE 2 NOISE DENSITY MEASUREMENT CIRCUIT FIGURE 3 POWER DERATING CURVE