: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1PMT5.0AT1G/T3G Series

Zener Transient Voltage Suppressor POWERMITE ${ }^{\circledR}$ Package

The 1PMT5.0AT1G/T3G Series is designed to protect voltage sensitive components from high voltage, high energy transients. Excellent clamping capability, high surge capability, low Zener impedance and fast response time. The advanced packaging technique provides for a highly efficient micro miniature, space saving surface mount with its unique heatsink design. The POWERMITE has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles (1.1 mm) in the industry. Because of its small size, it is ideal for use in cellular phones, portable devices, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Stand-off Voltage: 5.0 V - 58 V
- Peak Power - 200 W @ 1 ms (1PMT5.0A - 1PMT36A)

$$
\text { - } 175 \text { W@1ms (1PMT40A - 1PMT58A) }
$$

- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage
- Response Time is Typically $<1 \mathrm{~ns}$
- ESD Rating of Class 3 ($>16 \mathrm{kV}$) per Human Body Model
- Low Profile - Maximum Height of 1.1 mm
- Integral Heatsink/Locking Tabs
- Full Metallic Bottom Eliminates Flux Entrapment
- Small Footprint - Footprint Area of $8.45 \mathrm{~mm}^{2}$
- POWERMITE is JEDEC Registered as DO-216AA
- Lead Orientation in Tape: Cathode (Short) Lead to Sprocket Holes
- Cathode Indicated by Polarity Band
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
MOUNTING POSITION: Any
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR
 5-58 V
 200 W PEAK POWER

1: CATHODE
2: ANODE

POWERMITE
CASE 457

MARKING DIAGRAM

$\mathrm{M}=$ Date Code
Mxx = Specific Device Code (See Table on Page 3)
$=$ Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping †
1PMTxxAT1G	POWERMITE (Pb-Free)	3,000/Tape \& Reel
1PMTxxAT3G	POWERMITE (Pb-Free)	12,000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Maximum P_{pk} Dissipation, (PW-10/1000 $\mu \mathrm{s}$) (Note 1) (1PMT5.0A - 1PMT36A)	P_{pk}	200	W
Maximum P_{pk} Dissipation, (PW-10/1000 $\mu \mathrm{s}$) (Note 1) (1PMT40A - 1PMT58A)	P_{pk}	175	W
Maximum P_{pk} Dissipation, (PW-8/20 us) (Note 1)	P_{pk}	1000	W
DC Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2) Derate above $25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient	P_{D} $\mathrm{R}_{\text {日JA }}$	$\begin{aligned} & 500 \\ & 4.0 \\ & 248 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Lead (Anode)	$\mathrm{R}_{\theta \text { Janode }}$	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum DC Power Dissipation (Note 3) Thermal Resistance, Junction-to-Tab (Cathode)	P_{D} $\mathrm{R}_{\theta \text { Jcathode }}$	$\begin{aligned} & 3.2 \\ & 23 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Nonrepetitive current pulse at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Mounted with recommended minimum pad size, DC board FR-4.
3. At Tab (Cathode) temperature, $\mathrm{T}_{\mathrm{tab}}=75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless
otherwise noted, $\mathrm{V}_{\mathrm{F}}=3.5 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}($ Note 4$\left.)=35 \mathrm{~A}\right)$

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage $@ \mathrm{I}_{\mathrm{T}}$
I_{T}	Test Current
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}

ELECTRICAL CHARACTERISTICS $\left(T_{L}=30^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=1.25$ Volts @ 200 mA)

Device*	Marking	$V_{\text {RWM }}$	$\mathbf{V}_{\mathbf{B R}}$ @ $\mathrm{I}_{\mathbf{T}}(\mathrm{V})$ (Note 6)			$\frac{\mathbf{I}_{\mathbf{T}}}{(\mathrm{mA})}$	$\frac{\mathrm{I}_{\mathbf{R}} @ \mathrm{~V}_{\mathrm{RWM}}}{(\mu \mathrm{~A})}$	$\frac{\mathrm{V}_{\mathrm{C}} @ \mathrm{I}_{\mathrm{PP}}}{(\mathrm{~V})}$	IPP (A) (Note 7)
		(Note 5)	Min	Nom	Max				
1PMT5.0AT1G, T3G	MKE	5.0	6.4	6.7	7.0	10	50	9.2	21.7
1PMT7.0AT1G, T3G	MKM	7.0	7.78	8.2	8.6	10	30	12	16.7
1PMT12AT1G, T3G	MLE	12	13.3	14.0	14.7	1.0	1.0	19.9	10.1
1PMT16AT1G, T3G	MLP	16	17.8	18.75	19.7	1.0	1.0	26	7.7
1PMT18AT1G, T3G	MLT	18	20.0	21.0	22.1	1.0	1.0	29.2	6.8
1PMT22AT1G, T3G	MLX	22	24.4	25.6	26.9	1.0	1.0	35.5	5.6
1PMT24AT1G, T3G	MLZ	24	26.7	28.1	29.5	1.0	1.0	38.9	5.1
1PMT26AT1G, T3G	MME	26	28.9	30.4	31.9	1.0	1.0	42.1	4.8
1PMT28AT1G, T3G	MMG	28	31.1	32.8	34.4	1.0	1.0	45.4	4.4
1PMT30AT1G, T3G	MMK	30	33.3	35.1	36.8	1.0	1.0	48.4	4.1
1PMT33AT1G, T3G	MMM	33	36.7	38.7	40.6	1.0	1.0	53.3	3.8
1PMT36AT1G, T3G	MMP	36	40.0	42.1	44.2	1.0	1.0	58.1	3.4
1PMT40AT1G, T3G	MMR	40	44.4	46.8	49.1	1.0	1.0	64.5	2.7
1PMT48AT1G, T3G	MMX	48	53.3	56.1	58.9	1.0	1.0	77.4	2.3
1PMT51AT1G, T3G	MMZ	51	56.7	59.7	62.7	1.0	1.0	82.4	2.1
1PMT58AT1G, T3G	MNG	58	64.4	67.8	71.2	1.0	1.0	93.6	1.9

4. $1 / 2$ sine wave (or equivalent square wave), $\mathrm{PW}=8.3 \mathrm{~ms}$, duty cycle $=4$ pulses per minute maximum.
5. A transient suppressor is normally selected according to the Working Peak Reverse Voltage ($\mathrm{V}_{\mathrm{RWM}}$) which should be equal to or greater than the DC or continuous peak operating voltage level.
6. V_{BR} measured at pulse test current I_{T} at ambient temperature of $25^{\circ} \mathrm{C}$.
7. Surge current waveform per Figure 2 and derate per Figure 4.
*The " G " suffix indicates Pb -Free package.

TYPICAL PROTECTION CIRCUIT

TYPICAL CHARACTERISTICS

Figure 1. Pulse Rating Curve

Figure 2. $10 \times 1000 \boldsymbol{\mu s}$ Pulse Waveform

Figure 3. $\mathbf{8} \mathbf{X} \mathbf{2 0} \boldsymbol{\mu s}$ Pulse Waveform

Figure 4. Pulse Derating Curve

1PMT5.0AT1G/T3G Series

TYPICAL CHARACTERISTICS

Figure 5. Typical Derating Factor for Duty Cycle

Figure 7. Forward Voltage

Figure 6. Steady State Power Derating

Figure 8. Capacitance versus Working Peak Reverse Voltage

1PMT5.0AT1G/T3G Series

PACKAGE DIMENSIONS

POWERMITE
CASE 457-04
ISSUE F

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL FLASH, PROTRUSIONS OR GATE BUR
NOT EXCEED $0.15(0.006)$ PER SIDE.

	MILLIMETERS			INCHES	
DIM	MIN	MAX	MIN	MAX	
A	1.75	2.05	0.069	0.081	
B	1.75	2.18	0.069	0.086	
C	0.85	1.15	0.033	0.045	
D	0.40	0.69	0.016	0.027	
F	0.70	1.00	0.028	0.039	
H	-0.05	+0.10	-0.002	+0.004	
J	0.10	0.05	0.004	0.010	
K	3.60	3.90	0.142	0.154	
L	0.50	0.80	0.020	0.031	
R	1.20	1.50	0.047	0.059	
S	0.50	REF		0.019	

SOLDERING FOOTPRINT*

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

POWERMITE is a registered trademark of and used under a license from Microsemi Corporation.

ON Semiconductor and (0iN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

