

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

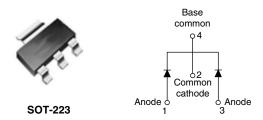
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Vishay High Power Products

Schottky Rectifier, 2 x 1 A

PRODUCT SUMMARY				
I _{F(AV)}	2 x 1 A			
V _R 30 V				

FEATURES

- Small foot print, surface mountable
- · Low profile
- · Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- · Common cathode
- Designed and qualified for industrial level

DESCRIPTION

The 20CJQ030 surface mount Schottky rectifier series has been designed for applications requiring very low forward drop and very small foot prints. Typical applications are in portables, switching power supplies, converters, automotive system, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
I _{F(AV)}	Rectangular waveform	2	A	
V _{RRM}		30	V	
I _{FSM}	t _p = 5 μs sine	400	A	
V _F	1 Apk, T _J = 125 °C (per leg)	0.42	V	
T _J	Range	- 55 to 150	°C	

VOLTAGE RATINGS					
PARAMETER	SYMBOL	20CJQ030	UNITS		
DC reverse voltage	V _R	30	V		
Working peak reverse voltage	V_{RWM}	30	V		

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current	per leg		50 % duty cycle at T_C = 132 °C, rectangular waveform		1	
See fig. 5	per device	I _{F(AV)}	50 % duty cycle at T_C = 117 °C, rectangular waveform		2	A
Maximum peak one cycle non-repetitive surge current per leg See fig. 7		I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	400	A
			10 ms sine or 6 ms rect. pulse		24	
Non-repetitive avalanche energy per leg E _{AS}		E _{AS}	T _J = 25 °C, I _{AS} = 1 A, L = 4 mH		2	mJ
Repetitive avalanche current per leg IAR Current decaying linearly to zero in 1 µs Frequency limited by T _J maximum V _A =		'	1	Α		

Document Number: 93271 Revision: 22-Aug-08

Vishay High Power Products Schottky Rectifier, 2 x 1 A

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	V _{FM} ⁽¹⁾	1 A	T _J = 25 °C	0.50	V
		2 A		0.59	
		1 A	- T _J = 125 °C	0.42	
		2 A		0.52	
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	- V _R = Rated V _R	0.1	- mA
See fig. 2	'RM\'	T _J = 125 °C		15	
Typical junction capacitance per leg	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		120	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body		6	nH
Maximum voltage rate of change	dV/dt	Rated V _R 4600		V/µs	

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to ambient	R _{thJA}	DC eneration	65	°C/W
Maximum thermal resistance, junction to lead	R _{thJL}	DC operation	25	
Approximate weight			0.13	g
Approximate weight			0.0045	OZ.
Marking device		Case style SOT-223	2C.	JQE

Note

(1)
$$\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$$
 thermal runaway condition for a diode on its own heatsink

Schottky Rectifier, 2 x 1 A Vishay High Power Products

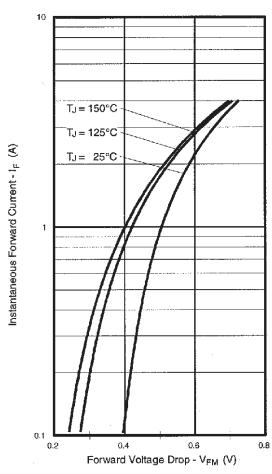


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

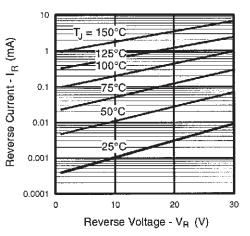


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

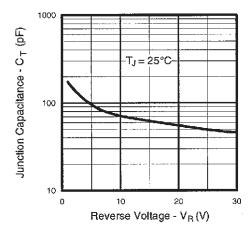


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

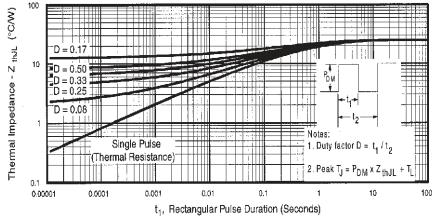


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Vishay High Power Products Schottky Rectifier, 2 x 1 A

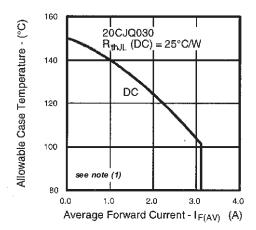


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

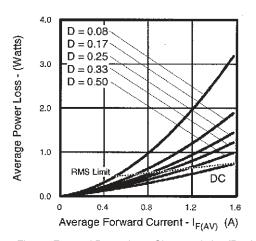


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

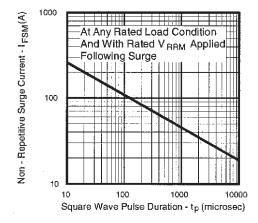


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

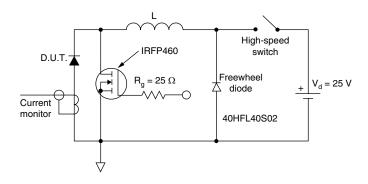
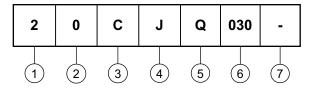


Fig. 8 - Unclamped Inductive Test Circuit

Note

 $\text{Formula used: } T_C = T_J - (\text{Pd} + \text{Pd}_{\text{REV}}) \times R_{\text{th}JC}; \\ \text{Pd} = \text{Forward power loss} = I_{\text{F}(\text{AV})} \times V_{\text{FM}} \text{ at } (I_{\text{F}(\text{AV})}/D) \text{ (see fig. 6)}; \\ \text{Pd}_{\text{REV}} = \text{Inverse power loss} = V_{\text{R1}} \times I_{\text{R}} (1 - D); I_{\text{R}} \text{ at } V_{\text{R1}} = 80 \% \text{ rated } V_{\text{R}}$


Document Number: 93271 Revision: 22-Aug-08

Schottky Rectifier, 2 x 1 A Vishay High Power Products

ORDERING INFORMATION TABLE

Device code

- 1 Current rating (2 = 2 A)
- 2 Schottky rectifier series
- 3 Circuit configuration:

C = Common cathode

4 - Package:

J = SOT-223

5 - Schottky "Q" series

6 - Voltage rating (030 = 30 V)

- • None = Standard production

• PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95022				
Part marking information	http://www.vishay.com/doc?95031			
Packaging information	http://www.vishay.com/doc?95035			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08