imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Si53159

PCI-EXPRESS GEN 1, GEN 2, GEN 3, AND GEN 4 NINE **OUTPUT FANOUT BUFFER**

100 to 210 MHz clock input range

Up to nine buffered clocks

I²C support with readback

Extended temperature:

3.3 V power supply

48-pin QFN package

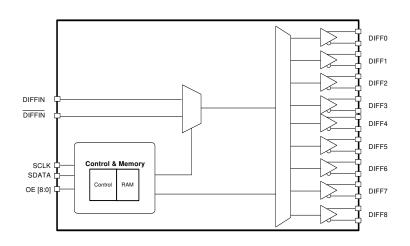
Wireless access point

capabilities

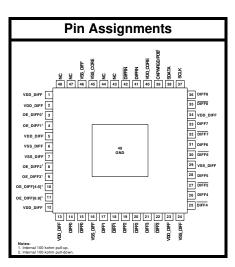
-40 to 85 °C

Features

- PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant
- Supports Serial-ATA (SATA) at 100 MHz
- Supports spread spectrum input Low power push-pull differential output buffers
- No termination resistors required
- Output enable pins for all buffered clocks


Applications

- Network attached storage
- Multi-function printers
- Servers


Description

The Si53159 is a high-performance, low additive jitter, PCIe clock buffer that can fan out nine PCIe clocks. The clock outputs are compliant to PCIe Gen 1, Gen 2, Gen 3, and Gen 4 specifications. The device has six hardware output enable control pins for enabling and disabling differential outputs. The small footprint and low power consumption makes the Si53159 the ideal clock solution for consumer and embedded applications. Measuring PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter Tool. Download it for free at www.silabs.com/pcielearningcenter.

Functional Block Diagram

Patents pending

TABLE OF CONTENTS

Section

<u>Page</u>

1. Electrical Specifications	ł
2. Functional Description	7
2.1. CKPWRGD/PDB (Power Down) Pin	7
2.2. PDB (Power Down) Assertion	7
2.3. PDB Deassertion	7
2.4. OE Pin	7
2.5. OE Assertion	7
2.6. OE Deassertion	7
3. Test and Measurement Setup	3
4. Control Registers)
4.1. I2C Interface)
4.2. Data Protocol)
5. Pin Descriptions: 48-Pin QFN15	
6. Ordering Guide	
7. Package Outline	
8. Land Pattern	
Document Change List	

1. Electrical Specifications

Table 1. DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
3.3 V Operating Voltage	VDD core	3.3 ± 5%	3.135	_	3.465	V
3.3 V Input High Voltage	V _{IH}	Control input pins	2.0	_	V _{DD} + 0.3	V
3.3 V Input Low Voltage	V _{IL}	Control input pins	$V_{SS} - 0.3$	_	0.8	V
Input High Voltage	V _{IHI2C}	SDATA, SCLK	2.2	_	—	V
Input Low Voltage	V _{ILI2C}	SDATA, SCLK	—	_	1.0	V
Input High Leakage Current	IIH	Except internal pull-down resistors, 0 < V _{IN} < V _{DD}	—	_	5	μA
Input Low Leakage Current	Ι _{ΙL}	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	-5	_	—	μA
High-impedance Output Current	I _{OZ}		-10		10	μA
Input Pin Capacitance	C _{IN}		1.5		5	pF
Output Pin Capacitance	C _{OUT}		—	—	6	pF
Pin Inductance	L _{IN}		—	_	7	nH
Power Down Current	I _{DD_PD}		—	_	1	mA
Dynamic Supply Current in Fanout Mode	I _{DD_3.3V}	All outputs enabled, 5" traces; 2 pF load, frequency at 100 MHz	—	_	60	mA

Table 2. AC Electrical Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Unit
DIFFIN at 0.7 V						
DIFFIN and DIFFIN Rising/Falling Slew Rate	T _R / T _F	Single ended measurement: $V_{OL} = 0.175$ to $V_{OH} = 0.525$ V (Averaged)	0.6		4	V/ns
Differential Input High Voltage	V _{IH}		150	—		mV
Differential Input Low Voltage	V _{IL}		_	—	-150	mV
Crossing Point Voltage at 0.7 V Swing	V _{OX}	Single-ended measurement	250	_	550	mV
Vcross Variation Over All edges	ΔV_{OX}	Single-ended measurement	_	_	140	mV
Differential Ringback Voltage	V _{RB}		-100	_	100	mV
Time before Ringback Allowed	T _{STABLE}		500	—		ps
Absolute Maximum Input Voltage	V _{MAX}			—	1.15	V
Absolute Minimum Input Voltage	V _{MIN}		-0.3	—		V
DIFFIN and DIFFIN Duty Cycle	T _{DC}	Measured at crossing point V_{OX}	45	—	55	%
Rise/Fall Matching	T _{RFM}	Determined as a fraction of $2 \times (T_R - T_F)/(T_R + T_F)$		_	20	%
DIFF at 0.7 V				1		
Duty Cycle	T _{DC}	Measured at 0 V differential	45	—	55	%
Clock Skew	T _{SKEW}	Measured at 0 V differential	_	—	50	ps
PCle Gen1 Pk-Pk Jitter	Pk-Pk	PCle Gen 1	0	_	10	ps
PCIe Gen 2 Phase Jitter	RMS _{GEN2}	10 kHz < F < 1.5 MHz	0	—	0.5	ps
		1.5 MHz < F < Nyquist	0	—	0.5	ps
PCIe Gen 3 Phase Jitter	RMS _{GEN3}	Includes PLL BW 2–4 MHz, CDR = 10 MHz	0	_	0.10	ps
Additive PCIe Gen 4 Phase Jitter	RMS _{GEN4}	PCIe Gen 4	_	—	0.10	ps
Additive Cycle to Cycle Jitter	T _{CCJ}	In buffer mode. Measured at 0 V differential	—	20	50	ps
Long-term Accuracy	L _{ACC}	Measured at 0 V differential	_	—	100	ppm
Rising/Falling Slew rate	T _R / T _F	Measured differentially from ±150 mV	2.5		8	V/ns
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300		550	mV

Notes:

Visit www.pcisig.com for complete PCIe specifications.
 Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.

3. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.

Table 2. AC Electrical Specifications (Continued)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Enable/Disable and Setup								
Clock Stabilization from Power-Up	T _{STABLE}	Measured from the point when both V _{DD} and clock input are valid	_	_	1.8	ms		
Stopclock Set-up Time	T _{SS}		10.0	_	—	ns		
 Notes: 1. Visit www.pcisig.com for complete PCIe specifications. 2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5. 3. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter. 								

Table 3. Absolute Maximum Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Main Supply Voltage	V _{DD_3.3V}	Functional	_		4.6	V	
Input Voltage	V _{IN}	Relative to V _{SS}	-0.5		4.6	V_{DC}	
Temperature, Storage	Τ _S	Non-functional	-65		150	°C	
Extended Temperature, Operating Ambient	T _A	Functional	-40	_	85	°C	
Temperature, Junction	TJ	Functional	_	—	150	°C	
Dissipation, Junction to Case	Ø _{JC}	JEDEC (JESD 51)	_		22	°C/W	
Dissipation, Junction to Ambient	Ø _{JA}	JEDEC (JESD 51)	_		30	°C/W	
ESD Protection (Human Body Model)	ESD _{HBM}	JEDEC (JESD 22 - A114)	2000			V	
Flammability Rating	UL-94	UL (Class)		V–0			
Note: Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.							

2. Functional Description

2.1. CKPWRGD/PDB (Power Down) Pin

The CKPWRGD/PDB pin is a dual-function pin. During initial power up, the pin functions as the CKPWRGD pin. Upon the first power up, if the CKPWRGD pin is low, the outputs will be disabled, but the crystal oscillator and I²C logic will be active. Once the CKPWRGD pin has been sampled high by the clock chip, the pin assumes a PDB functionality. When the pin has assumed a PDB functionality and is pulled low, the device will be placed in power down mode. The CKPWRGD/PDB pin is required to be driven at all times even though it has an internal 100 k Ω resistor.

2.2. PDB (Power Down) Assertion

The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low in power down mode. In power down mode, all outputs, the crystal oscillator, and the I²C logic are disabled.

2.3. PDB Deassertion

When a valid rising edge on CKPWRGD/PDB pin is applied, all outputs are enabled in a glitch-free manner within two to six output clock cycles.

2.4. OE Pin

The OE pin is an active high input used to enable and disable the output clock. To enable the output clock, the OE pin and the I^2C OE bit need to be a logic high. By default, the OE pin and the I^2C OE bit are set to a logic high. There are two methods to disable the output clock: the OE pin is pulled to a logic low, or the I^2C OE bit is set to a logic low. The OE pin is required to be driven at all times even though it has an internal 100 k Ω resistor.

2.5. OE Assertion

The OE pin is an active high input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OE function is achieved by pulling the OE pin and the I^2C OE bit high which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles.

2.6. OE Deassertion

The OE function is deasserted by pulling the pin or the I^2C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low.

3. Test and Measurement Setup

This diagram shows the test load configuration for the differential clock signals.

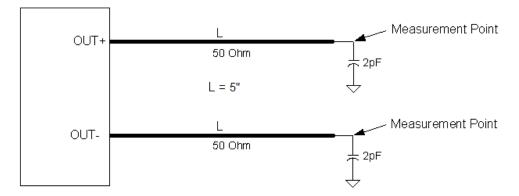


Figure 1. 0.7 V Differential Load Configuration

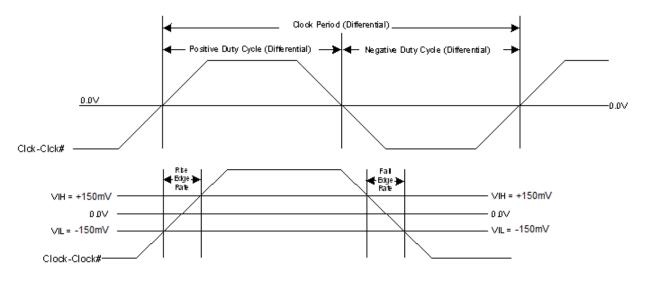


Figure 2. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)

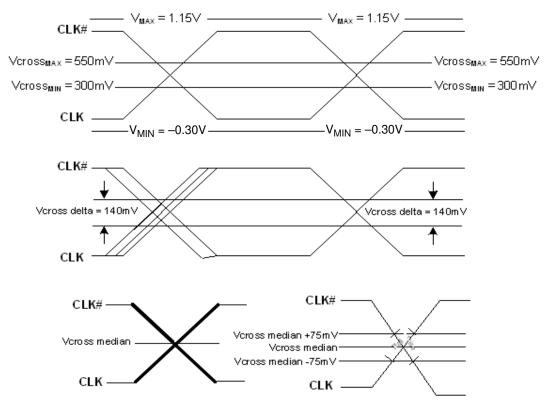


Figure 3. Single-Ended Measurement for Differential Output Signals (for AC Parameters Measurement)

4. Control Registers

4.1. I²C Interface

To enhance the flexibility and function of the clock synthesizer, an I^2C interface is provided. Through the I^2C interface, various device functions, such as individual clock output buffers are individually enabled or disabled. The registers associated with the I^2C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required.

4.2. Data Protocol

The clock driver I²C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes.

The block write and block read protocol is outlined in Table 4 on page 10 while Table 5 on page 11 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h).

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address—7 bits	8:2	Slave address—7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code—8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count—8 bits	20	Repeat start
28	Acknowledge from slave	27:21	Slave address—7 bits
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave—8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte/Slave Acknowledges	46:39	Data byte 1 from slave—8 bits
	Data Byte N–8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave—8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data Byte N from slave—8 bits
			NOT Acknowledge
			Stop

Table 4. Block Read and Block Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address-7 bits	8:2	Slave address-7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code-8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address-7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave-8 bits
		38	NOT Acknowledge
		39	Stop

Control Register 0. Byte 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Туре	R/W							

Reset settings = 00000000

Bit	Name	Function
7:0	Reserved	

Control Register 1. Byte 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DIFF0_OE		DIFF1_OE	DIFF2_OE	DIFF3_OE
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 00010111

Bit	Name	Function
7:5	Reserved	
4	DIFF0_OE	Output Enable for DIFF0. 0: Output disabled. 1: Output enabled.
3	Reserved	
2	DIFF1_OE	Output Enable for DIFF1. 0: Output disabled. 1: Output enabled.
1	DIFF2_OE	Output Enable for DIFF2. 0: Output disabled. 1: Output enabled.
0	DIFF3_OE	Output Enable for DIFF3. 0: Output disabled. 1: Output enabled.

Control Register 2. Byte 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF4_OE	DIFF5_OE	DIFF6_OE	DIFF7_OE	DIFF8_OE			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 11111000

Bit	Name	Function
7	DIFF4_OE	Output Enable for DIFF4. 0: Output disabled. 1: Output enabled.
6	DIFF5_OE	Output Enable for DIFF5. 0: Output disabled. 1: Output enabled.
5	DIFF6_OE	Output Enable for DIFF6. 0: Output disabled. 1: Output enabled.
4	DIFF7_OE	Output Enable for DIFF7. 0: Output disabled. 1: Output enabled.
3	DIFF8_OE	Output Enable for DIFF8. 0: Output disabled. 1: Output enabled.
2:0	Reserved	

Control Register 3. Byte 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		Rev Co	de[3:0]		Vendor ID[3:0]			
Туре	R/W	R/W R/W		R/W	R/W	R/W	R/W	R/W

Reset settings = 00001000

Bit	Name	Function	
7:4	Rev Code[3:0]	Program Revision Code.	
3:0	Vendor ID[3:0]	Vendor Identification Code.	

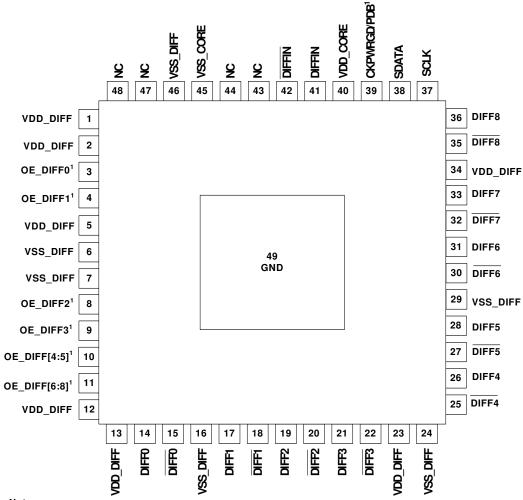
Control Register 4. Byte 4

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	BC[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 00000110

Bit	Name	Function	
7:0	BC[7:0]	Byte Count Register.	

Control Register 5. Byte 5


Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF_Amp_Sel	DIFF_Amp_Cntl[2]	DIFF_Amp_Cntl[1]	DIFF_Amp_Cntl[0]				
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 11011000

Bit	Name	Function				
7	DIFF_Amp_Sel	DIFF_Amp_Sel Amplitude Control for DIFF Differential Outputs.				
		0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4].				
6	DIFF_Amp_Cntl[2]	DIFF Differential Outputs Amplitude Adjustment.				
5	DIFF_Amp_Cntl[1]	000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV				
4	DIFF_Amp_Cntl[0]	100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV				
3:0	Reserved					

5. Pin Descriptions: 48-Pin QFN

Notes:

Internal 100 kohm pull-up.
 Internal 100 kohm pull-down.

Table 6. Si53159 48-Pin QFN Descriptions

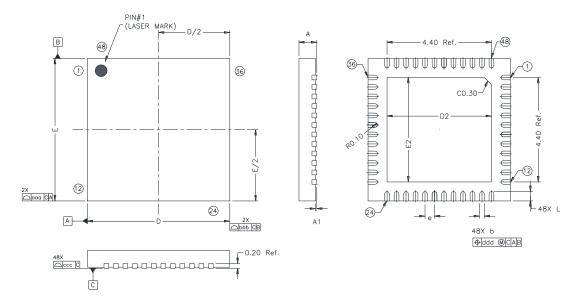
Pin #	Name	Туре	Description
1	VDD_DIFF	PWR	3.3 V power supply.
2	VDD_DIFF	PWR	3.3 V power supply.
3	OE_DIFF0	I,PU	Active high input pin enables DIFF0 (internal 100 k Ω pull-up).
4	OE_DIFF1	I,PU	Active high input pin enables DIFF1 (internal 100 k Ω pull-up).
5	VDD_DIFF	PWR	3.3 V power supply.
6	VSS_DIFF	GND	Ground.
7	VSS_DIFF	GND	Ground.
8	OE_DIFF2	I,PU	Active high input pin enables DIFF2 (internal 100 k Ω pull-up).

Table 6.	Si53159	48-Pin	QFN	Descriptions
----------	---------	--------	-----	--------------

Pin #	Name	Туре	Description
9	OE_DIFF3	I,PU	Active high input pin enables DIFF3 (internal 100 k Ω pull-up).
10	OE_DIFF[4:5]	I,PU	Active high input pin enables DIFF[4:5] (internal 100 k Ω pull-up).
11	OE_DIFF[6:8]	I,PU	Active high input pin enables DIFF[6:8] (internal 100 k Ω pull-up).
12	VDD_DIFF	PWR	3.3 V power supply.
13	VDD_DIFF	PWR	3.3 V power supply.
14	DIFF0	O, DIF	0.7 V, 100 MHz differential clock.
15	DIFF0	O, DIF	0.7 V, 100 MHz differential clock.
16	VSS_DIFF	GND	Ground.
17	DIFF1	O, DIF	0.7 V, 100 MHz differential clock.
18	DIFF1	O, DIF	0.7 V, 100 MHz differential clock.
19	DIFF2	O, DIF	0.7 V, 100 MHz differential clock.
20	DIFF2	O, DIF	0.7 V, 100 MHz differential clock.
21	DIFF3	O, DIF	0.7 V, 100 MHz differential clock.
22	DIFF3	O, DIF	0.7 V, 100 MHz differential clock.
23	VDD_DIFF	PWR	3.3V power supply.
24	VSS_DIFF	GND	Ground.
25	DIFF4	O, DIF	0.7 V, 100 MHz differential clock.
26	DIFF4	O, DIF	0.7 V, 100 MHz differential clock.
27	DIFF5	O, DIF	0.7 V, 100 MHz differential clock.
28	DIFF5	O, DIF	0.7 V, 100 MHz differential clock.
29	VSS_DIFF	GND	Ground.
30	DIFF6	O, DIF	0.7 V, 100 MHz differential clock.
31	DIFF6	O, DIF	0.7 V, 100 MHz differential clock.
32	DIFF7	O, DIF	0.7 V, 100 MHz differential clock.
33	DIFF7	O, DIF	0.7 V, 100 MHz differential clock.
34	VDD_DIFF	PWR	3.3 V power supply.
35	DIFF8	O, DIF	0.7 V, 100 MHz differential clock.
36	DIFF8	O, DIF	0.7 V, 100 MHz differential clock.
37	SCLK	I	I ² C compatible SCLOCK.

Pin #	Name	Туре	Description
38	SDATA	I/O	I ² C compatible SDATA.
39	CKPWRGD/PDB	I, PU	Active low input pin asserts power down (PDB) and disables all outputs (internal 100 k Ω pull-up).
40	VDD_CORE	PWR	3.3 V power supply for core.
41	DIFFIN	I	0.7 V Differential True Input, typically 100 MHz. Input frequency range 100 to 210 MHz.
42	DIFFIN	0	0.7 V Differential Complement Input, typically 100 MHz. Input frequency range 100 to 210 MHz.
43	NC	NC	No connect.
44	NC	NC	No connect.
45	VSS_CORE	GND	Ground for core.
46	VSS_DIFF	GND	Ground.
47	NC	NC	No connect.
48	NC	NC	No connect.
49	GND	GND	Ground for bottom pad of the IC.

Table 6. Si53159 48-Pin QFN Descriptions


6. Ordering Guide

Part Number	Package Type	Temperature
Lead-free		
Si53159-A01AGM	48-pin QFN	Extended, -40 to 85 °C
Si53159-A01AGMR	48-pin QFN—Tape and Reel	Extended, -40 to 85 °C

7. Package Outline

Figure 4 illustrates the package details for the Si53159. Table 7 lists the values for the dimensions shown in the illustration.

Figure 4. 48-Pin Quad Flat No Lead	(QFN) Package
------------------------------------	---------------

Symbol	Millimeters			
	Min	Nom	Max	
А	0.70	0.75	0.80	
A1	0.00	0.025	0.05	
b	0.15	0.20	0.25	
D		6.00 BSC		
D2	4.30	4.40	4.50	
е		0.40 BSC		
E		6.00 BSC		
E2	4.30	4.40	4.50	
L	0.30	0.40	0.50	
aaa		0.10		
bbb	0.10			
CCC	0.08			
ddd	0.07			

Table 7. Package Diagram Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

- 3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components

8. Land Pattern

Figure 5 illustrates the recommended land pattern details for the Si53159 in a 48-pin QFN package. Table 8 lists the values for the dimensions shown in the illustration.

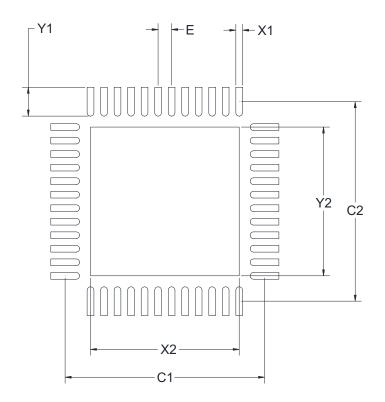


Figure 5. Land Pattern

Table 8. PCB Land Pattern Dimensions

Dimension	Min	Мах
C1	5.85	5.95
C2	5.85	5.95
X1	0.15	0.25
Y1	0.80	0.90
E	0.40 BSC	
X2	4.35	4.45
	4.35	4.45

Notes:

- General
 - 1. All dimensions shown are in millimeters (mm).
 - 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad.

Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- **2.** The stencil thickness should be 0.125mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- **4.** A 4x4 array of 0.80mm square openings on 1.05mm pitch should be used for the center ground pad to achieve between 50-60% solder coverage.

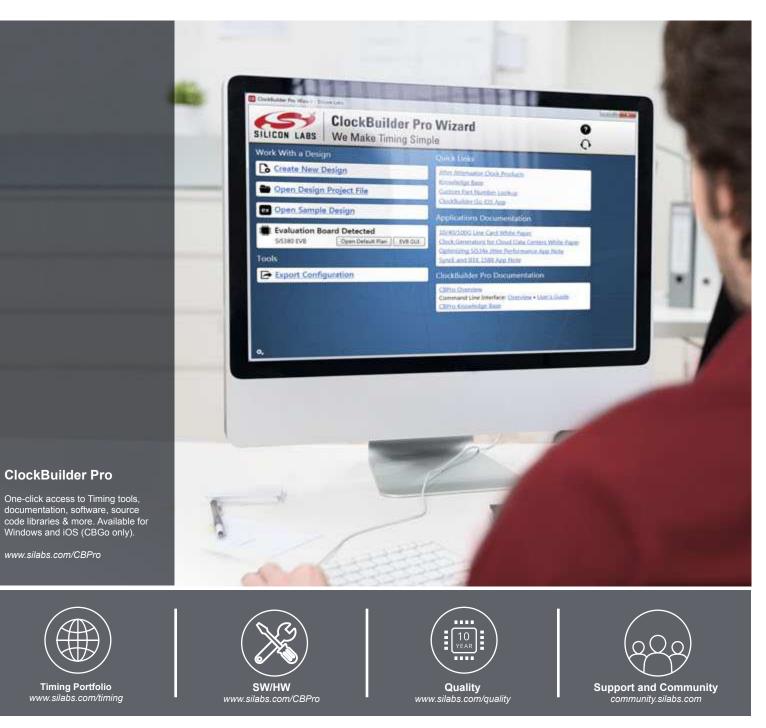
Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 1.0

- Updated Features and Description.
- Corrected pinout.
- Updated Table 2.
- Updated Section 2.1.
- Updated Section 2.1.1.
- Updated Sections 2.2 through 2.8.
- Updated Section 4.2.
- Updated Table 7.


Revision 1.0 to Revision 1.1

- Updated Features on page 1.
- Updated Description on page 1.
- Updated specs in Table 2, "AC Electrical Specifications," on page 5.

Revision 1.1 to Revision 1.2

 Added condition for Clock Stabilization from Powerup, T_{STABLE}, in Table 2.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories, A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com