

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

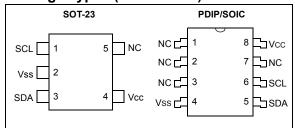
24AA02UID/24AA025UID

2K I²CTM Serial EEPROMs with Unique 32-bit Serial Number

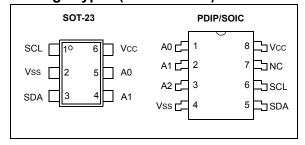
Device Selection Table

Part Number	Vcc Range	Max. Clock Frequency	Temp. Ranges	Cascadable	Page Size	Unique ID Length
24AA02UID	1.7-5.5V	400 kHz ⁽¹⁾	I	No	8-Byte	32-Bit
24AA025UID	1.7-5.5V	400 kHz ⁽¹⁾	I	Yes	16-Byte	32-Bit

Note 1: 100 kHz for Vcc <2.5V

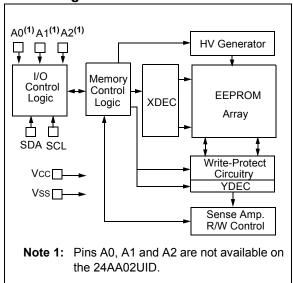

Features:

- Preprogrammed 32-Bit Serial Number:
 - Unique across all UID-family EEPROMs
 - Scalable to 48-bit, 64-bit, 128-bit, 256-bit, and other lengths
- Single Supply with Operation Down to 1.7V
- · Low-Power CMOS Technology:
 - Read current 1 mA, max.
 - Standby current 1 μA, max.
- 2-Wire Serial Interface, I²C[™] Compatible
- · Schmitt Trigger Inputs for Noise Suppression
- · Output Slope Control to Eliminate Ground Bounce
- · 100 kHz and 400 kHz Clock Compatibility
- · Page Write Time 3 ms, typical
- · Self-Timed Erase/Write Cycle
- · Page Write Buffer:
 - 8-byte page (24AA02UID)
 - 16-byte page (24AA025UID)
- ESD Protection >4,000V
- · More than 1 Million Erase/Write Cycles
- · Data Retention >200 Years
- · Factory Programming Available
- · Available Packages:
 - 8-lead PDIP, 8-lead SOIC, and 5-lead SOT-23 (24AA02UID)
 - 8-lead PDIP, 8-lead SOIC, and 6-lead SOT-23 (24AA025UID)
- · RoHS Compliant
- · Temperature Ranges:
 - Industrial (I): -40°C to +85°C


Description:

The Microchip Technology Inc. 24AA02UID/24AA025UID (24AA02XUID*) is a 2 Kbit Electrically Erasable PROM with a preprogrammed, 32-bit unique ID. The device is organized as two blocks of 128 x 8-bit memory with a 2-wire serial interface. Low-voltage design permits operation down to 1.7V, with maximum standby and active currents of only 1 μA and 1 mA, respectively. The 24AA02XUID also has a page write capability for up to eight bytes of data (16 bytes on the 24AA025UID). The 24AA02XUID is available in the standard 8-pin PDIP, 8-pin SOIC, 5-lead SOT-23, and 6-lead SOT-23 packages.

Package Types (24AA02UID)



Package Types (24AA025UID)

*24AA02XUID is used in this document as a generic part number for the 24AA02UID/24AA025UID devices.

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Vcc	6.5V
All inputs and outputs w.r.t. Vss	0.3V to Vcc +1.0V
Storage temperature	65°C to +150°C
Ambient temperature with power applied	40°C to +85°C
ESD protection on all pins	≥ 4 kV

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

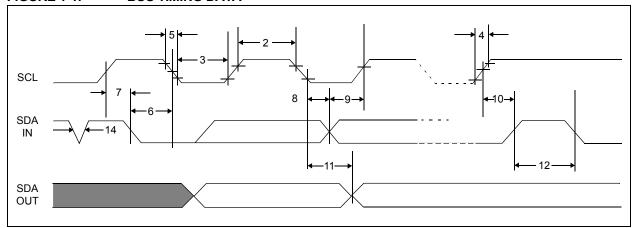
DC CHA	RACTER	ISTICS	Industrial (I): TA	= -40°C to	+85°C, \	/cc = +1.7V to +5.5V
Param. No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
	_	SCL, SDA, A0, A1, and A2 pins	_		_	_	_
D1	VIH	High-level Input Voltage	0.7 Vcc	_	_	V	_
D2	VIL	Low-level Input Voltage	_	_	0.3 Vcc	V	_
D3	VHYS	Hysteresis of Schmitt Trigger inputs	0.05 Vcc	_	_	V	(Note)
D4	Vol	Low-level Output Voltage	_	_	0.40	V	IOL = 3.0 mA, VCC = 2.5V
D5	ILI	Input Leakage Current	_	_	±1	μА	VIN = Vss or Vcc
D6	ILO	Output Leakage Current	_	_	±1	μΑ	Vout = Vss or Vcc
D7	CIN, COUT	Pin Capacitance (all inputs/outputs)		1	10	pF	VCC = 5.0V (Note) TA = 25°C, FCLK = 1 MHz
D8	Icc write	Operating Current		0.1	3	mA	Vcc = 5.5V, SCL = 400 kHz
D9	Icc read		_	0.05	1	mA	_
D10	Iccs	Standby Current	_	0.01	1	μА	Industrial SDA = SCL = Vcc A0, A1, A2 = Vss

Note: This parameter is periodically sampled and not 100% tested.

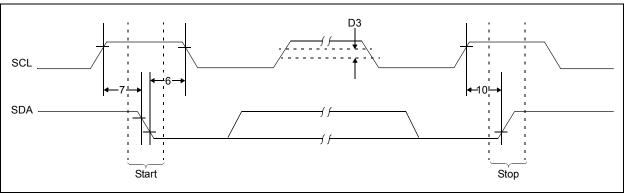
24AA02UID/24AA025UID

TABLE 1-2: AC CHARACTERISTICS

AC CHA	RACTERI	STICS	Industrial (I): TA = -40° C to $+85^{\circ}$ C			C, Vcc = +1.7V to +5.5V	
Param. No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
1	FCLK	Clock frequency	_ _	1 1	400 100	kHz	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
2	THIGH	Clock high time	600 4000	1 1	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
3	TLOW	Clock low time	1300 4700	1 1	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
4	TR	SDA and SCL rise time (Note 1)	_		300 1000	ns	2.5V ≤ VCC ≤ 5.5V (Note 1) 1.7V ≤ VCC < 2.5V (Note 1)
5	TF	SDA and SCL fall time	_		300	ns	(Note 1)
6	THD:STA	Start condition hold time	600 4000	_	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
7	Tsu:sta	Start condition setup time	600 4700	_	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
8	THD:DAT	Data input hold time	0	_	_	ns	(Note 2)
9	TSU:DAT	Data input setup time	100 250	_	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
10	Tsu:sto	Stop condition setup time	600 4000	_	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
11	ТАА	Output valid from clock (Note 2)	_	_	900 3500	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
12	TBUF	Bus free time: Time the bus must be free before a new transmission can start	1300 4700	_	_	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
13	TOF	Output fall time from VIH minimum to VIL maximum	_ _	<u> </u>	250 250	ns	2.5V ≤ VCC ≤ 5.5V 1.7V ≤ VCC < 2.5V
14	TSP	Input filter spike suppression (SDA and SCL pins)	_	_	50	ns	(Notes 1 and 3)
15	Twc	Write cycle time (byte or page)	_	_	5	ms	
16	_	Endurance	1M	_	_	cycles	25°C (Note 4)


Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

^{2:} As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.


^{3:} The combined TsP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a Ti specification for standard operation.

^{4:} This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip's web site at www.microchip.com.

FIGURE 1-1: BUS TIMING DATA

FIGURE 1-2: BUS TIMING START/STOP

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Name	PDIP	SOIC	5-Pin SOT-23	6-Pin SOT-23	Description	
A0	1	1	_	5	Chip Address Input ⁽¹⁾	
A1	2	2	_	4	Chip Address Input ⁽¹⁾	
A2	3	3	_	_	Chip Address Input ⁽¹⁾	
Vss	4	4	2	2	Ground	
SDA	5	5	3	3	Serial Address/Data I/O	
SCL	6	6	1	1	Serial Clock	
NC	7	7	5	_	Not Connected	
Vcc	8	8	4	6	+1.7V to 5.5V Power Supply	

Note 1: Chip address inputs A0, A1 and A2 are not connected on the 24AA02UID.

2.1 Serial Address/Data Input/Output (SDA)

SDA is a bidirectional pin used to transfer addresses and data into and out of the device. Since it is an opendrain terminal, the SDA bus requires a pull-up resistor to Vcc (typical 10 k Ω for 100 kHz, 2 k Ω for 400 kHz).

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating Start and Stop conditions.

2.2 Serial Clock (SCL)

The SCL input is used to synchronize the data transfer to and from the device.

2.3 A0, A1, A2 Chip Address Inputs

The A0, A1 and A2 pins are not used by the 24AA02UID. They may be left floating or tied to either Vss or Vcc.

For the 24AA025UID, the levels on the A0, A1 and A2 inputs are compared with the corresponding bits in the slave address. The chip is selected if the compare is true. For the 6-lead SOT-23 package, pin A2 is not connected and its corresponding bit in the slave address should always be set to '0'.

Up to eight 24AA025UID devices (four for the SOT-23 package) may be connected to the same bus by using different Chip Select bit combinations. These inputs must be connected to either Vss or Vcc.

3.0 FUNCTIONAL DESCRIPTION

The 24AA02XUID supports a bidirectional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions, while the 24AA02XUID works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

4.0 BUS CHARACTERISTICS

The following bus protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined (Figure 4-1).

4.1 Bus Not Busy (A)

Both data and clock lines remain high.

4.2 Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

4.3 Stop Data Transfer (C)

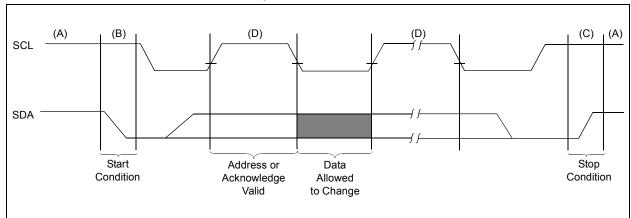
A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

4.4 Data Valid (D)

The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

The data on the line must be changed during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of data bytes transferred between Start and Stop conditions is determined by the master device and is, theoretically, unlimited (although only the last sixteen will be stored when doing a write operation). When an overwrite does occur, it will replace data in a first-in first-out (FIFO) fashion.


4.5 Acknowledge

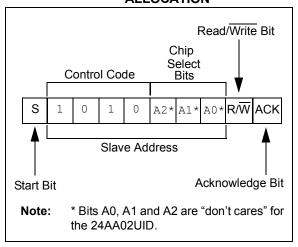
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.

Note: The 24AA02XUID does not generate any Acknowledge bits if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable-low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. During reads, a master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave (24AA02XUID) will leave the data line high to enable the master to generate the Stop condition.

5.0 DEVICE ADDRESSING

A control byte is the first byte received following the Start condition from the master device. The control byte consists of a 4-bit control code. For the 24AA02XUID, this is set as '1010' binary for read and write operations. For the 24AA02UID the next three bits of the control byte are "don't cares".

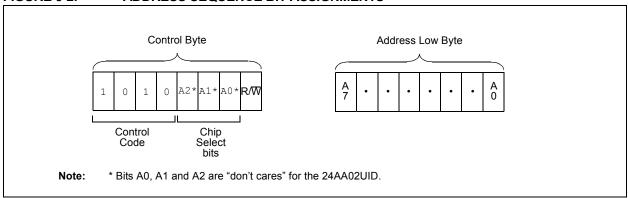

For the 24AA025UID, the next three bits of the control byte are the Chip Select bits (A2, A1, A0). The Chip Select bits allow the use of up to eight 24AA025UID devices on the same bus and are used to select which device is accessed. The Chip Select bits in the control byte must correspond to the logic levels on the corresponding A2, A1 and A0 pins for the device to respond. These bits are in effect the three Most Significant bits of the word address.

For the 6-pin SOT-23 package, the A2 address pin is not available. During device addressing, the A2 Chip Select bit should be set to '0'.

The last bit of the control byte defines the operation to be performed. When set to '1', a read operation is selected. When set to '0', a write operation is selected. Following the Start condition, the 24AA02XUID monitors the SDA bus, checking the device type identifier being transmitted and, upon a '1010' code, the slave device outputs an Acknowledge signal on the SDA line. Depending on the state of the R/\overline{W} bit, the 24AA02XUID will select a read or write operation.

Operation	Control Code	Chip Select	R/W
Read	1010	Chip Address	1
Write	1010	Chip Address	0

FIGURE 5-1: CONTROL BYTE ALLOCATION



5.1 Contiguous Addressing Across Multiple Devices

The Chip Select bits A2, A1 and A0 can be used to expand the contiguous address space for up to 16K bits by adding up to eight 24AA025UID devices on the same bus. In this case, software can use A0 of the control byte as address bit A8, A1 as address bit A9 and A2 as address bit A10. It is not possible to sequentially read across device boundaries.

For the SOT-23 package, up to four 24AA025UID devices can be added for up to 8K bits of address space. In this case, software can use A0 of the <u>control byte</u> as address bit A8, and A1 as address bit A9. It is not possible to sequentially read across device boundaries.

FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGNMENTS

6.0 WRITE OPERATION

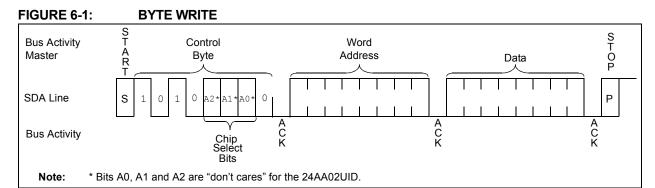
6.1 Byte Write

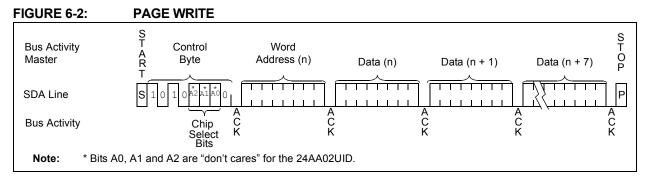
Following the Start condition from the master, the device code (4 bits), the chip address (3 bits) and the R/W bit which is a logic-low, is placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow once it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the Address Pointer of the 24AA02XUID. After receiving another Acknowledge signal from the 24AA02XUID, the master device will transmit the data word to be written into the addressed memory location. The 24AA02XUID acknowledges again and the master generates a Stop condition. This initiates the internal write cycle and, during this time, the 24AA02XUID will not generate Acknowledge signals (Figure 6-1).

6.2 Page Write

The write-control byte, word address and the first data byte are transmitted to the 24AA02XUID in the same way as in a byte write. However, instead of generating a Stop condition, the master transmits up to eight data bytes to the 24AA02XUID, which are temporarily stored in the on-chip page buffer and will be written into memory once the master has transmitted a Stop condition. Upon receipt of each word, the three lower-order Address Pointer bits (four for the 24AA025UID) are internally incremented by '1'. The higher-order five bits (four for the 24AA025UID) of the word address remain

constant. If the master should transmit more than eight words (16 for the 24AA025UID) prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received an internal write cycle will begin (Figure 6-2).

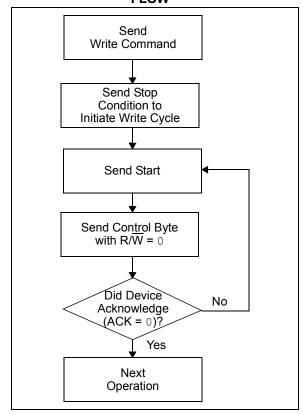

Page write operations are limited to writing bytes within a single physical page regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and end at addresses that are integer multiples of [page size - 1]. If a page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.


6.3 Write Protection

Note:

The upper half of the array (80h-FFh) is permanently write-protected. Write operations to this address range are inhibited. Read operations are not affected.

The remaining half of the array (00h-7Fh) can be written to and read from normally.



7.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally-timed write cycle and ACK polling can then be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/ \overline{W} = 0). If the device is still busy with the write cycle, no ACK will be returned. If the cycle is complete, the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 7-1 for a flow diagram of this operation.

FIGURE 7-1: ACKNOWLEDGE POLLING FLOW

8.0 READ OPERATION

Read operations are initiated in the same \underline{way} as write operations, with the exception that the R/W bit of the slave address is set to '1'. There are three basic types of read operations: current address read, random read and sequential read.

8.1 Current Address Read

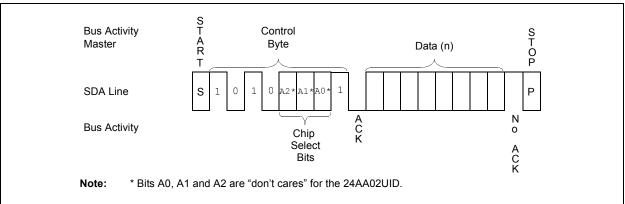
The 24AA02XUID contains an address counter that maintains the address of the last word accessed, internally incremented by '1'. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with R/\overline{W} bit set to '1', the 24AA02XUID issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition, and the 24AA02XUID discontinues transmission (Figure 8-1).

8.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is accomplished by sending the word address to the 24AA02XUID as part of a write operation. Once the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. The master then issues the control byte again, but with the R/W bit set to a '1'. The 24AA02XUID will then issue an acknowledge and transmit the 8-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition, and the 24AA02XUID will discontinue transmission (Figure 8-2).

8.3 Sequential Read

Sequential reads are initiated in the same way as a random read, except that once the 24AA02XUID transmits the first data byte, the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the 24AA02XUID to transmit the next sequentially-addressed 8-bit word (Figure 8-3).


To provide sequential reads, the 24AA02XUID contains an internal Address Pointer that is incremented by one upon completion of each operation. This Address Pointer allows the entire memory contents to be serially read during one operation.

8.4 Noise Protection

The 24AA02XUID employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below 1.5V at nominal conditions.

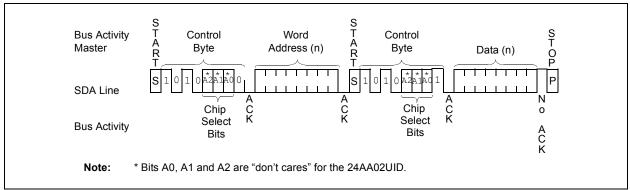
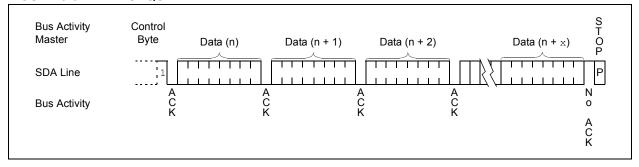
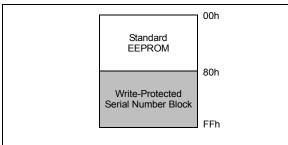

The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation, even on a noisy bus.

FIGURE 8-1: CURRENT ADDRESS READ



24AA02UID/24AA025UID

FIGURE 8-2: RANDOM READ


9.0 PREPROGRAMMED UNIQUE 32-BIT SERIAL NUMBER

The 24AA02XUID is programmed at the factory with a unique 32-bit serial number stored in the upper half of the array and permanently write-protected. The remaining 1,024 bits are available for application use.

Note: The 32-bit serial number is unique across

all Microchip UID-family serial EEPROM devices.

FIGURE 9-1: MEMORY ORGANIZATION

The 4-byte serial number is stored in array locations 0xFC through 0xFF, as shown in Figure 9-2.

9.1 Manufacturer and Device Codes

In addition to the serial number, a manufacturer code is stored at location 0xFA and a device identifier is stored at 0xFB. The manufacturer code is fixed as 0x29. For the 24AA02XUID, the device identifier is 0x41. The '4' indicates the I^2C^{TM} family and the '1' indicates a 2 Kbit memory density.

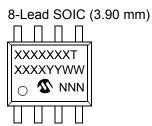
9.2 Extending the 32-bit Serial Number

For applications that require serial numbers larger than 32 bits, additional data bytes can be used to pad the provided serial number to meet the required length. Any data byte values can be used for padding as the 32-bit serial number ensures the extended serial number remains unique.

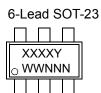
The padding can be performed in two ways. The first method is to pad the data in software by combining the 32-bit serial number from the 24AA02XUID with fixed data. The second method is to extend the number of bytes read from the 24AA02XUID to meet the required length. Table 9-1 shows example address ranges and their corresponding serial number lengths.

TABLE 9-1: EXTENDED READ EXAMPLES

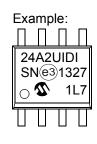
Start Address	End Address	Serial Number Length
0xFC	0xFF	32 bits
0xFA	0xFF	48 bits
0xF8	0xFF	64 bits
0xF0	0xFF	128 bits
0xE0	0xFF	256 bits


FIGURE 9-2: SERIAL NUMBER PHYSICAL MEMORY MAP EXAMPLE

Description	Manufacturer Code	Device Code	32-bit Serial Number			
Data	29h	41h	12h	34h	56h	78h
Туре	Fix	ed	Serialized			
Array Address	FAh	FBh	FCh	FDh	FEh	FFh


10.0 PACKAGING INFORMATION

10.1 Package Marking Information



Example:
AAAE3
O 271L7

Part Number	1st Line Marking Code					
	SOT-23	SOIC	PDIP			
	l Temp.	l Temp.	l Temp.			
24AA02UID	AAAFY	24A2UIDT	24AA02ID			
24AA025UID	AAAEY	4A25UIDT	24A25UID			

Note: NN = Alphanumeric traceability code

24AA02UID/24AA025UID

Legend: XX...X Part number or part number code

T Temperature (I, E)

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

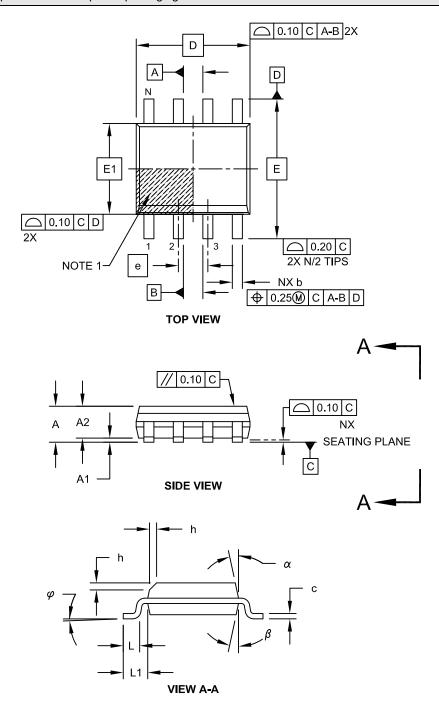
NNN Alphanumeric traceability code (2 characters for small packages)

(e3) Pb-free JEDEC designator for Matte Tin (Sn)

Note: For very small packages with no room for the Pb-free JEDEC designator

(e3), the marking will only appear on the outer carton or reel label.

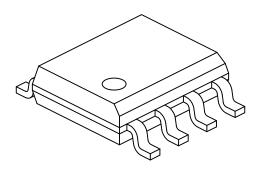
Note: In the event the full Microchip part number cannot be marked on one line, it will


be carried over to the next line, thus limiting the number of available

characters for customer-specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

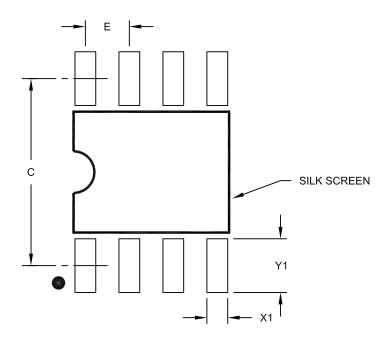
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		8	
Pitch	е		1.27 BSC	
Overall Height	Α	ı	i	1.75
Molded Package Thickness	A2	1.25	ı	-
Standoff §	A1	0.10	İ	0.25
Overall Width	Е	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D		4.90 BSC	
Chamfer (Optional)	h	0.25	i	0.50
Foot Length	L	0.40	i	1.27
Footprint	L1		1.04 REF	
Foot Angle	φ	0°	i	8°
Lead Thickness	С	0.17	İ	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

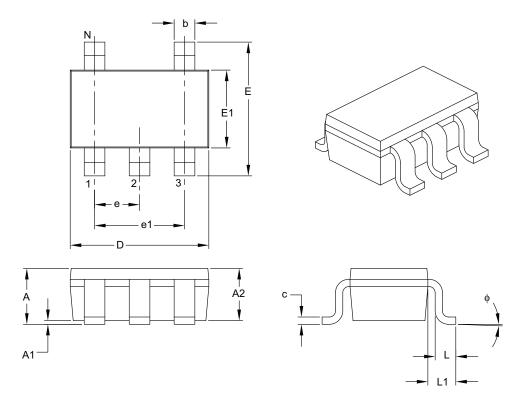
Note:

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch E		1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)				1.55


Notes:

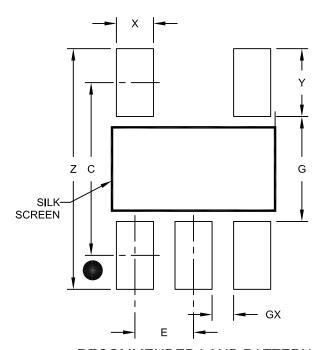
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

^{1.} Dimensioning and tolerancing per ASME Y14.5M

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	its MILLIMETERS		
Dimens	Dimension Limits		NOM	MAX
Number of Pins	N	5		
Lead Pitch	е	0.95 BSC		
Outside Lead Pitch	e1	1.90 BSC		
Overall Height	Α	0.90	_	1.45
Molded Package Thickness	A2	0.89	_	1.30
Standoff	A1	0.00	_	0.15
Overall Width	Е	2.20	_	3.20
Molded Package Width	E1	1.30	_	1.80
Overall Length	D	2.70	_	3.10
Foot Length	L	0.10	_	0.60
Footprint	L1	0.35	_	0.80
Foot Angle	ф	0°	_	30°
Lead Thickness	С	0.08	_	0.26
Lead Width	b	0.20	_	0.51


Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

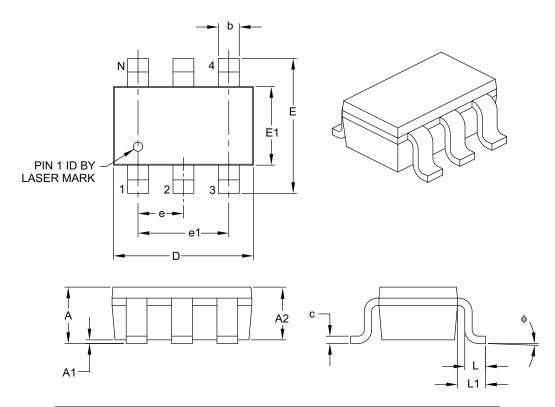
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.95 BSC		
Contact Pad Spacing	С		2.80	
Contact Pad Width (X5)	Х			0.60
Contact Pad Length (X5)	Υ			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90


Notes:

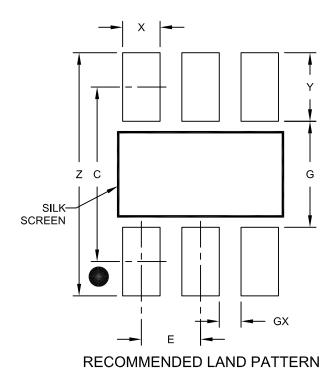
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091A

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	6			
Pitch	е	0.95 BSC			
Outside Lead Pitch	e1	1.90 BSC			
Overall Height	Α	0.90	_	1.45	
Molded Package Thickness	A2	0.89	_	1.30	
Standoff	A1	0.00	_	0.15	
Overall Width	Е	2.20	_	3.20	
Molded Package Width	E1	1.30	_	1.80	
Overall Length	D	2.70	_	3.10	
Foot Length	L	0.10	_	0.60	
Footprint	L1	0.35	_	0.80	
Foot Angle	ф	0°	_	30°	
Lead Thickness	С	0.08	_	0.26	
Lead Width	b	0.20	_	0.51	


Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-028B

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units **MILLIMETERS Dimension Limits** MIN MOM MAX Contact Pitch 0.95 BSC Ε Contact Pad Spacing С 2.80 Contact Pad Width (X6) 0.60 Χ Contact Pad Length (X6) Υ 1.10 Distance Between Pads G 1.70 Distance Between Pads GX 0.35 Overall Width 3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028A

APPENDIX A: REVISION HISTORY

Revision A (05/13)

Initial release.

24AA02UID/24AA025UID

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com