mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

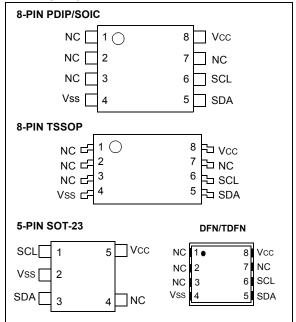
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

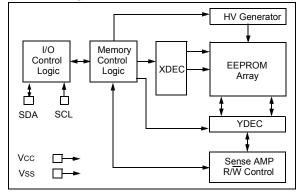
128-Bit I²C[™] Bus Serial EEPROM

Device Selection Table

Device	Vcc Range	Temp Range
24AA00	1.8-5.5	I
24LC00	2.5-5.5	I
24C00	4.5-5.5	I,E


Features:

- Single Supply with Operation down to 1.8V for 24AA00 Devices, 2.5V for 24LC00 Devices
- Low-Power CMOS Technology:
- Read current 500 μA, typical
- Standby current 100 nA, typical
- 2-Wire Serial Interface, I²C[™] Compatible
- · Schmitt Trigger Inputs for Noise Suppression
- · Output Slope Control to Eliminate Ground Bounce
- 100 kHz and 400 kHz Clock Compatibility
- Page Write Time 3 ms, Typical
- Self-Timed Erase/Write Cycle
- ESD Protection >4000V
- More than 1 Million Erase/Write Cycles
- Data Retention >200 Years
- · Factory Programming Available
- Packages include 8-lead PDIP, SOIC, TSSOP, DFN, TDFN and 5-lead SOT-23
- · Pb-Free and RoHS Compliant
- Temperature Ranges Available:
- Industrial (I): -40°C to +85°C
- Automotive (E): -40°C to +125°C


Description:

The Microchip Technology Inc. 24AA00/24LC00/ 24C00 (24XX00*) is a 128-bit Electrically Erasable PROM memory organized as 16 x 8 with a 2-wire serial interface. Low-voltage design permits operation down to 1.8 volts for the 24AA00 version, and every version maintains a maximum standby current of only 1 μ A and typical active current of only 500 μ A. This device was designed for where a small amount of EEPROM is needed for the storage of calibration values, ID numbers or manufacturing information, etc. The 24XX00 is available in 8-pin PDIP, 8-pin SOIC (3.90 mm), 8-pin TSSOP, 8-pin 2x3 DFN, TDFN and the 5-pin SOT-23 packages.

Package Types

Block Diagram

*24XX00 is used in this document as a generic part number for the 24AA00/24LC00/24C00 devices.

I²C is a trademark of Philips Corporation.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Vcc	6.5V
All inputs and outputs w.r.t. Vss	-0.6V to Vcc +1.0V
Storage temperature	65°C to +150°C
Ambient temperature with power applied	40°C to +125°C
ESD protection on all pins	4 kV

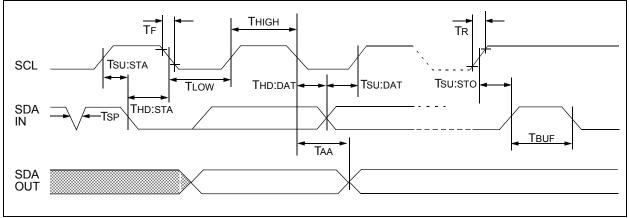

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

All Parameters apply across the recommended operating ranges unless otherwise noted	Industrial (I): $T_A = -40^{\circ}C \text{ to } +85^{\circ}C,$ Automotive (E) $T_A = -40^{\circ}C \text{ to } +125^{\circ}C,$			Vcc = 1.8V to 5.5V Vcc = 4.5V to 5.5V	
Parameter	Symbol	Min.	Max.	Conditions	
SCL and SDA pins:					
High-level input voltage	Vih	0.7 Vcc	—	V	(Note)
Low-level input voltage	VIL	_	0.3 Vcc	V	(Note)
Hysteresis of Schmitt Trigger inputs	VHYS	.05 Vcc	—	V	Vcc ≥ 2.5V (Note)
Low-level output voltage	Vol	—	0.4	V	IOL = 3.0 mA, VCC = 4.5V IOL = 2.1 mA, VCC = 2.5V
Input leakage current	ILI	-	±1	μA	VIN = VCC or VSS
Output leakage current	Ilo		±1	μA	VOUT = VCC or VSS
Pin capacitance (all inputs/outputs)	Cin, Cout	-	10	pF	Vcc = 5.0V (Note) Ta = 25°C, FcLk = 1 MHz
Operating current	ICC Write	_	2	mA	Vcc = 5.5V, SCL = 400 kHz
	Icc Read	—	1	mA	Vcc = 5.5V, SCL = 400 kHz
Standby current	Iccs	_	1	μA	Vcc = 5.5V, SDA = SCL = Vcc

Note: This parameter is periodically sampled and not 100% tested.

FIGURE 1-1: BUS TIMING DATA

TABLE 1-2: AC CHARACTERISTICS

All Parameters apply across all recommended operating ranges unless otherwise noted	Industrial Automotiv	· ·			°C, Vcc = 1.8V to 5.5V 5°C, Vcc = 4.5V to 5.5V
Parameter	Symbol	Min	Мах	Units	Conditions
Clock frequency	FCLK		100 100 400	kHz	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Clock high time	Тнідн	4000 4000 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Clock low time	TLOW	4700 4700 1300		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
SDA and SCL rise time (Note 1)	TR		1000 1000 300	ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
SDA and SCL fall time	Tf		300	ns	(Note 1)
Start condition hold time	THD:STA	4000 4000 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Start condition setup time	TSU:STA	4700 4700 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Data input hold time	THD:DAT	0	—	ns	(Note 2)
Data input setup time	TSU:DAT	250 250 100		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \mbox{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Stop condition setup time	Τѕυ:ѕто	4000 4000 600		ns	4.5V ≤ Vcc ≤ 5.5V (E Temp range) 1.8V ≤ Vcc ≤ 4.5V 4.5V ≤ Vcc ≤ 5.5V
Output valid from clock (Note 2)	ΤΑΑ		3500 3500 900	ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Bus free time: Time the bus must be free before a new transmis- sion can start	TBUF	4700 4700 1300		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 1.8V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$
Output fall time from Viн minimum to Vi∟ maximum	Tof	20+0.1 CB	250	ns	(Note 1), CB ≤ 100 pF
Input filter spike suppression (SDA and SCL pins)	TSP		50	ns	(Notes 1, 3)
Write cycle time	Twc	_	4	ms	
Endurance		1M		cycles	(Note 4)

Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance[™] Model which can be obtained at www.microchip.com.

2.0 PIN DESCRIPTIONS

Pin Function Table

Name	PDIP	SOIC	TSSOP	DFN ⁽¹⁾	TDFN ⁽¹⁾	SOT-23	Description
NC	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	—	Not Connected
Vss	4	4	4	4	4	2	Ground
SDA	5	5	5	5	5	3	Serial Address/Data I/O
SCL	6	6	6	6	6	1	Serial Clock
WP	7	7	7	7	7	5	Write-Protect Input
Vcc	8	8	8	8	8	4	+1.8V to 5.5V Power Supply

Note 1: The exposed pad on the DFN/TDFN packages can be connected to Vss or left floating.

2.1 SDA Serial Data

This is a bidirectional pin used to transfer addresses and data into and data out of the device. It is an open drain terminal, therefore the SDA bus requires a pull-up resistor to Vcc (typical 10 k Ω for 100 kHz, 2 k Ω for 400 kHz).

For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the Start and Stop conditions.

2.2 SCL Serial Clock

This input is used to synchronize the data transfer from and to the device.

2.3 Noise Protection

The SCL and SDA inputs have Schmitt Trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.

3.0 FUNCTIONAL DESCRIPTION

The 24XX00 supports a bidirectional 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as a transmitter, and a device receiving data as a receiver. The bus has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access, and generates the Start and Stop conditions, while the 24XX00 works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

4.0 BUS CHARACTERISTICS

The following **bus protocol** has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been defined (Figure 4-1).

4.1 Bus Not Busy (A)

Both data and clock lines remain high.

4.2 Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock (SCL) is high determines a Start condition. All commands must be preceded by a Start condition.

4.3 Stop Data Transfer (C)

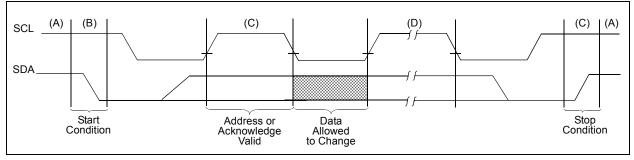
A low-to-high transition of the SDA line while the clock (SCL) is high determines a Stop condition. All operations must be ended with a Stop condition.

4.4 Data Valid (D)

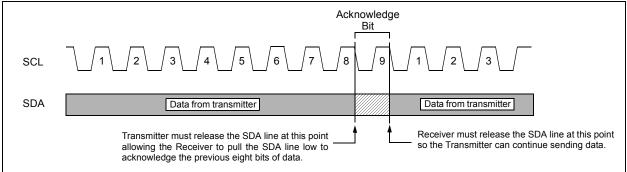
The state of the data line represents valid data when, after a Start condition, the data line is stable for the duration of the high period of the clock signal.

The data on the line must be changed during the low period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a Start condition and terminated with a Stop condition. The number of the data bytes transferred between the Start and Stop conditions is determined by the master device and is theoretically unlimited.


4.5 Acknowledge

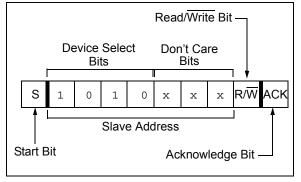
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this Acknowledge bit.


Note:	The 24XX	X00 does	not	generate	any		
Acknowledge bits if an internal program-							
ming cycle is in progress.							

The device that acknowledges has to pull down the SDA line during the Acknowledge clock pulse in such a way that the SDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an Acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable the master to generate the Stop condition (Figure 4-2).

FIGURE 4-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS

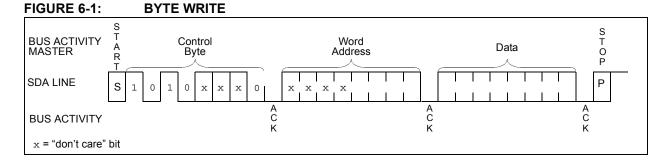
FIGURE 4-2: ACKNOWLEDGE TIMING



5.0 DEVICE ADDRESSING

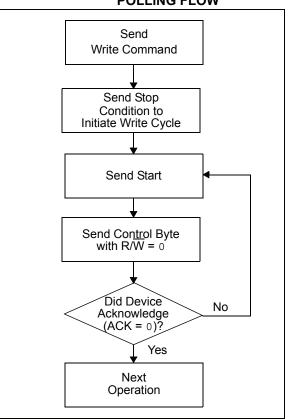
After generating a Start condition, the bus master transmits a control byte consisting of a slave address and a Read/Write bit that indicates what type of operation is to be performed. The slave address for the 24XX00 consists of a 4-bit device code '1010' followed by three "don't care" bits.

The last bit of the control byte determines the operation to be performed. When set to a one a read operation is selected, and when set to a zero a write operation is selected (Figure 5-1). The 24XX00 monitors the bus for its corresponding slave address all the time. It generates an Acknowledge bit if the slave address was true and it is not in a programming mode.



6.0 WRITE OPERATIONS

6.1 Byte Write


Following the Start signal from the master, the device code (4 bits), the "don't care" bits (3 bits), and the R/W bit (which is a logic low) are placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the word address and will be written into the Address Pointer of the 24XX00. Only the lower four address bits are used by the device, and the upper four bits are "don't cares." The 24XX00 will acknowledge the address byte and the master device will then transmit the data word to be written into the addressed memory location. The 24XX00 acknowledges again and the master generates a Stop condition. This initiates the internal write cycle, and during this time the 24XX00 will not generate Acknowledge signals (Figure 6-1). After a byte Write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a Stop bit is transmitted to the device at any point in the Write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the Stop bit is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a Stop bit is sent before a full eight data bits have been transmitted, then the Write command will abort and no data will be written. The 24XX00 employs a Vcc threshold detector circuit which disables the internal erase/write logic if the Vcc is below 1.5V (24AA00 and 24LC00) or 3.8V (24C00) at nominal conditions.

7.0 ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the Stop condition for a Write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a Start condition followed by the control byte for a Write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, then the Start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next Read or Write command. See Figure 7-1 for flow diagram.

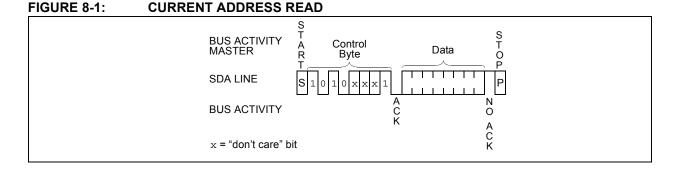
FIGURE 7-1: ACKNOWLEDGE POLLING FLOW

8.0 READ OPERATIONS

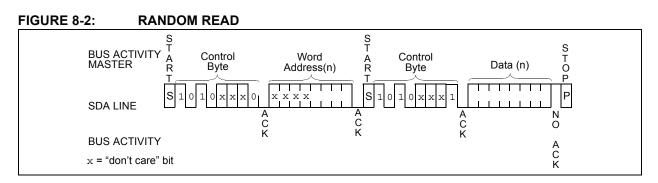
Read operations are initiated in the same way as write operations with the exception that the R/W bit of the slave address is set to one. There are three basic types of read operations: current address read, random read and sequential read.

8.1 Current Address Read

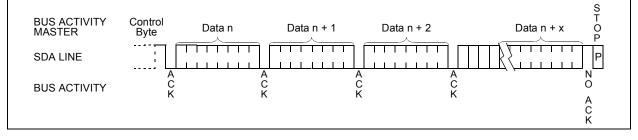
The 24XX00 contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous read access was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with the R/W bit set to one, the device issues an acknowledge and transmits the eight-bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the device discontinues transmission (Figure 8-1).


8.2 Random Read

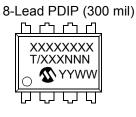
Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the device as part of a write operation. After the word address is sent, the master generates a Start condition following the acknowledge. This terminates the write operation, but not before the internal Address Pointer is set. Then the master issues the control byte again, but with the R/W bit set to a one. The 24XX00 will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer, but does generate a Stop condition and the device discontinues transmission (Figure 8-2). After this command, the internal address counter will point to the address location following the one that was just read.

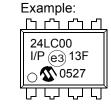

8.3 Sequential Read

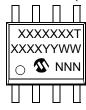
Sequential reads are initiated in the same way as a random read except that after the device transmits the first data byte, the master issues an acknowledge as opposed to a Stop condition in a random read. This directs the device to transmit the next sequentially addressed 8-bit word (Figure 8-3).

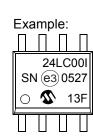

To provide sequential reads the 24XX00 contains an internal Address Pointer which is incremented by one at the completion of each read operation. This Address Pointer allows the entire memory contents to be serially read during one operation.

24AA00/24LC00/24C00

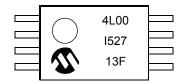





9.0 PACKAGING INFORMATION


9.1 Package Marking Information

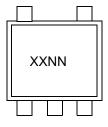
8-Lead SOIC (3.90 mm)



8-Lead TSSOP

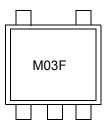
Example:

8-Lead 2x3 DFN



Example:

8-Lead 2x3 TDFN

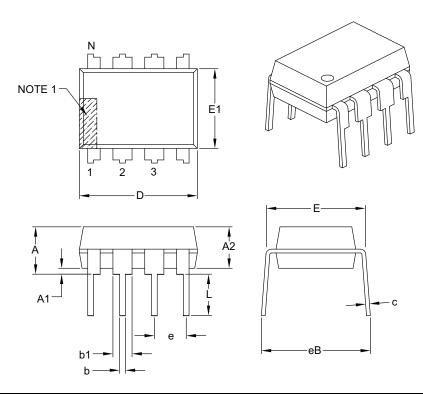

5-Lead SOT-23

Example:

Example:

	1st Line Marking Codes						
Part Number	TEEOD	SOT-23		DFN		TDFN	
	TSSOP	l Temp.	E Temp.	l Temp.	E Temp.	l Temp.	E Temp.
24AA00	4A00	B0NN	—	201	_	A01	—
24LC00	4L00	MONN	—	204	_	A04	_
24C00	4C00	D0NN	E0NN	207	_	A07	A08

Note: NN = Alphanumeric traceability code


Legend:	XXX T YY WW NNN @3	Part number or part number code Temperature (I, E) Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code (2 characters for small packages) Pb-free JEDEC designator for Matte Tin (Sn)
Note:		v small packages with no room for the Pb-free JEDEC designator marking will only appear on the outer carton or reel label.
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

Note: Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion.

*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.

8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

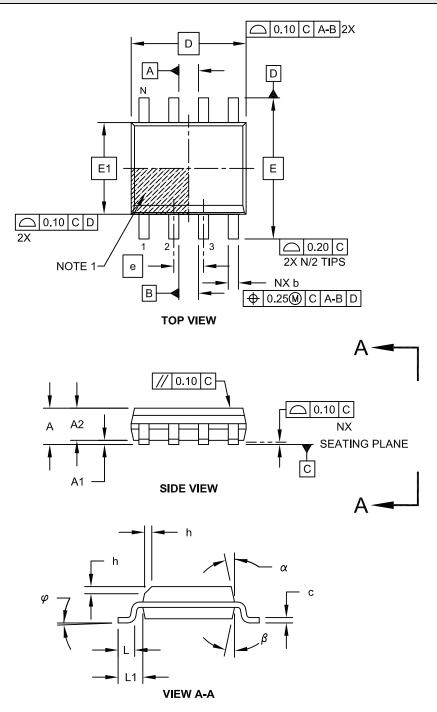
	Units			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		8	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

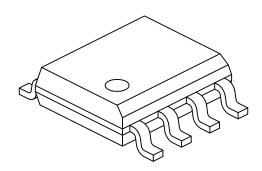
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E		6.00 BSC	
Molded Package Width	E1	3.90 BSC		
Overall Length	D		4.90 BSC	
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

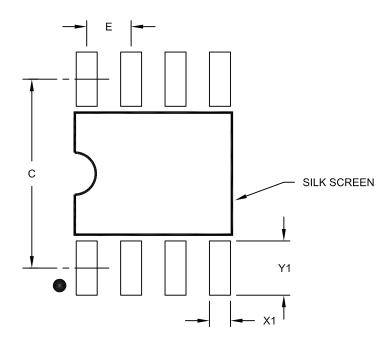
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

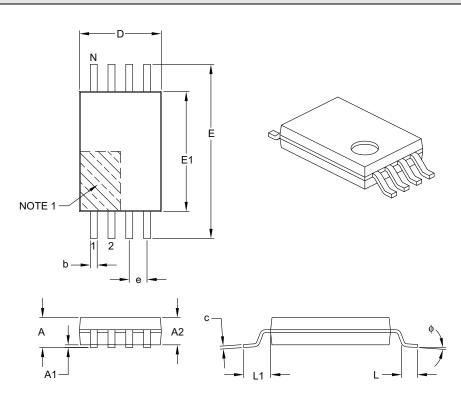
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

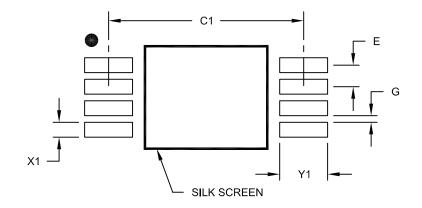
	Units	MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		8	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	0.15
Overall Width	E		6.40 BSC	
Molded Package Width	E1	4.30	4.40	4.50
Molded Package Length	D	2.90	3.00	3.10
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.19	-	0.30

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-086B

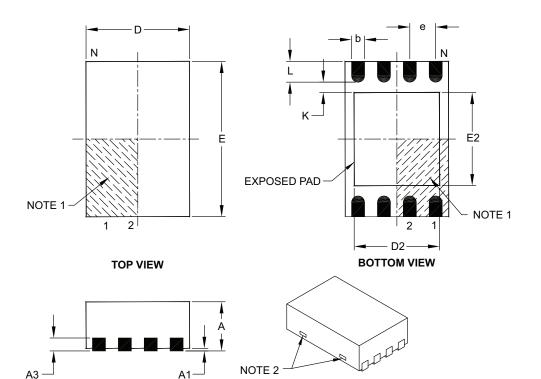
8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	C1		5.90		
Contact Pad Width (X8)	X1			0.45	
Contact Pad Length (X8)	Y1			1.45	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

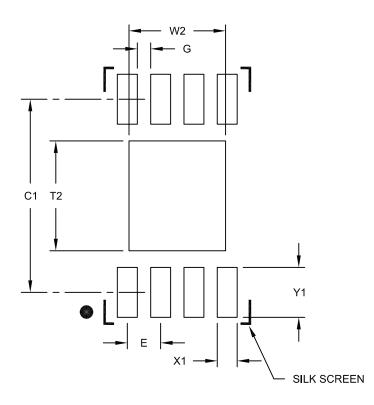
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2086A

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	8		
Pitch	e	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	3.00 BSC		
Exposed Pad Length	D2	1.30	-	1.55
Exposed Pad Width	E2	1.50	-	1.75
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123C

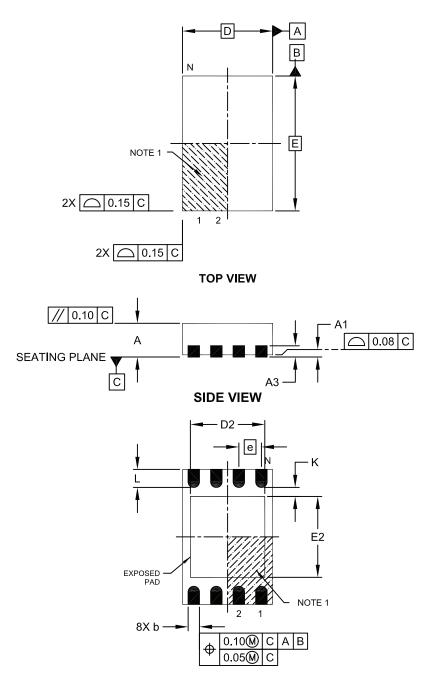
8-Lead Plastic Dual Flat, No Lead Package (MC) - 2x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			1.45
Optional Center Pad Length	T2			1.75
Contact Pad Spacing	C1		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.75
Distance Between Pads	G	0.20		

Notes:

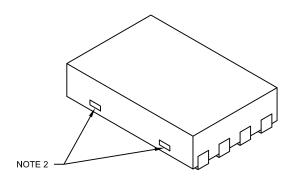

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2123B

8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



BOTTOM VIEW

Microchip Technology Drawing No. C04-129C Sheet 1 of 2

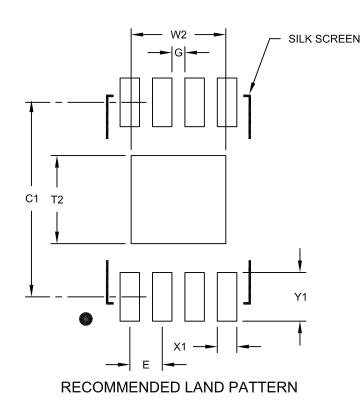
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е	0.50 BSC		
Overall Height	Α	0.70	0.75	0.80
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	3.00 BSC		
Exposed Pad Length	D2	1.20	-	1.60
Exposed Pad Width	E2	1.20	-	1.60
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.25	0.30	0.45
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated
- 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

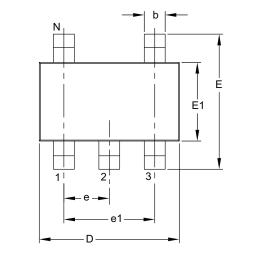
Microchip Technology Drawing No. C04-129C Sheet 2 of 2

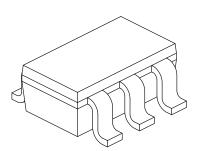
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75 mm Body [TDFN]

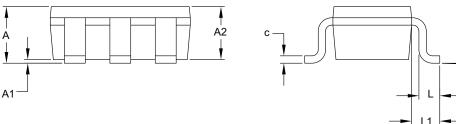
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Е	0.50 BSC			
Optional Center Pad Width	W2			1.46	
Optional Center Pad Length	T2			1.36	
Contact Pad Spacing	C1		3.00		
Contact Pad Width (X8)	X1			0.30	
Contact Pad Length (X8)	Y1			0.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2129A

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν	5			
Lead Pitch	е	0.95 BSC			
Outside Lead Pitch	e1	1.90 BSC			
Overall Height	А	0.90	-	1.45	
Molded Package Thickness	A2	0.89	-	1.30	
Standoff	A1	0.00	-	0.15	
Overall Width	E	2.20	-	3.20	
Molded Package Width	E1	1.30	-	1.80	
Overall Length	D	2.70	-	3.10	
Foot Length	L	0.10	-	0.60	
Footprint	L1	0.35	-	0.80	
Foot Angle	φ	0°	-	30°	
Lead Thickness	с	0.08	-	0.26	
Lead Width	b	0.20	_	0.51	

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

A