

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IB IL AO 4/8/U/BP-XC-PAC

Inline analog output terminal, version for extreme conditions, 8 outputs

Data sheet 8359_en_00

© PHOENIX CONTACT 2012-05-08

1 Description

This terminal is designed for use within an Inline station. This terminal provides an 8-channel output module to output analog standard voltage signals.

The output values are represented by 16-bit or 8-bit values. Thanks to special engineering measures and tests, the ter-

minal can be used under extreme ambient conditions.

Features

- Eight analog signal outputs
- Connection of actuators in 2-wire technology with shield connection
- Communication via either process data or parameter channel (PCP)
- Channels are configured independently of one another using the bus system.
- Measured values can be represented in four different formats
- Diagnostic indicator
- Can be used under extreme ambient conditions
- Painted PCBs
- Extended temperature range T2 (-40°C ... +55°C)

This data sheet is only valid in association with the IL SYS INST UM E user manual.

Make sure you always use the latest documentation. It can be downloaded at www.phoenixcontact.net/catalog.

Table of contents

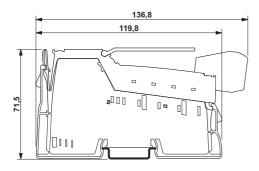
1	Description	1
2	Ordering data	3
3	Technical data	4
4	Tolerance and temperature response	7
5	Tested successfully: Use under extreme ambient conditions	8
6	Internal basic circuit diagram	9
7	Electrical isolation	10
8	Local diagnostic indicators	10
9	Terminal point assignment for each connector	10
10	Installation instructions	11
11	Connection notes	11
12	Connection example	11
13	Connecting shielded cables using the shield connector	12
14	Process data	
15	OUT process data	13
	15.1 Output word OUT1 (control word)	
	15.2 Parameters in output word OUT1	15
	15.3 Parameters for configuration	15
16	IN process data	16
	16.1 Input word IN1 (status word)	
	16.2 Input words IN2 to IN5	16
17	Formats for representing output values	17
	17.1 IB IL format (default setting)	
	17.2 IB ST format	18
	17.3 S7-compatible format	19
	17.4 "Standardized representation" format	20
18	Configuration and analog value transmission	21
19	PCP communication	22
	19.1 Object dictionary	22
	19.2 Object descriptions	23

2 Ordering data

Products

Order No.	Pcs. / Pkt.
/BP-XC-PAC 2701164	1

Accessories


Description	Туре	Order No.	Pcs. / Pkt.
Inline shield connector for analog Inline terminals	IB IL SCN 6-SHIELD-TWIN	2740245	5
Shield connection clamp for applying the shield on busbars	SK 8	3025163	10
Shield connection clamp for applying the shield on busbars	SK 14	3025176	10
Shield connection clamp for applying the shield on busbars	SK 20	3025189	10
Shield connection clamp for applying the shield on busbars	SK 35	3026463	10
Support for mounting on the NS 35/7,5 DIN rail, for 10 mm x 3 mm busbars	AB-SK	3025341	10
Support for direct mounting with contact to the mounting surface	AB-SK 65	3026489	10
Support, made of insulation material, with fixing screws, can be used for either 10 mm x 3 mm or 6 mm x 6 mm busbars	AB-SK/E	3026476	10
Neutral busbar, 3 mm x 10 mm, length: 1000 mm	NLS-CU 3/10 SN 1000MM	0402174	10
Power terminal, conductor cross section: 0.5 - 4 mm ² , width: 7 mm	AK 4	0404017	50
Power terminal, conductor cross section: 0.5 - 4 mm ² , width: 7 mm; color: green-yellow	AK 4 GNYE	0421029	50
Power terminal, conductor cross section: 0.5 - 4 mm², width: 7 mm; color: black	AKG 4 BK	0421032	50

Documentation

Description	Туре	Order No.	Pcs. / Pkt.
"Automation terminals of the Inline product range" user manual	IL SYS INST UM E	_	_

3 Technical data

Dimensions (nominal sizes in mm)

Housing dimensions (width x height x depth)	12.2 x 136.8 x 71.5 mm
---	------------------------

General data	
Color	Green
Weight	215 g (with connectors)
Operating mode	Process data mode with 5 words/1 word PCP
Connection method for actuators	2-wire technology with shield connection
Ambient temperature (operation)	-40 °C \dots +55°C (see also the "Tested successfully: Use under extreme ambient conditions" section of the data sheet).
Ambient temperature (storage/transport)	-40 °C +85°C
Temperature class	T2 (-40°C +55°C, IEC 50155)
Permissible humidity (operation/storage/transport)	10% to 95%, according to DIN EN 61131-2
Permissible air pressure (operation/storage/transport)	70 kPa 106 kPa (up to 3000 m above sea level)
Degree of protection	IP20
Protection class	III, IEC 61140, EN 61140, VDE 0140-1

Connection data		
Designation	Inline connector	
Connection method	Spring-cage connection	
Conductor cross section, solid/stranded	0.08 mm ² 1.5 mm ²	
Conductor cross section (AWG)	28 16	

Inline local bus interface		
Connection method	Inline data jumper	
Transmission speed	500 kbps	
Power consumption		
Communications power U _I	7.5 V DC	

1 oner consumption	
Communications power U _L	7.5 V DC
Current consumption from U _L	80 mA (typical)
I/O supply voltage U _{ANA}	24 V DC
Current consumption at U _{ANA}	72 mA (typical)
Total power consumption	2.35 W (typical)

Supply of the module electronics and I/O through bus coupler/power terminal

Connection method Potential routing

Analog outputs		
Number	Eight analog voltage outputs	
Connection of signals	2 or 3-wire, shielded twisted pair cabl	е
Signals	0 V to 10 V, 0 V to 5 V, ±10 V, ±5 V	
Output value representation 16 bits (15 bits with sign bit) or 8 bits (7 bits with sign bit)		(7 bits with sign bit)
Resolution of the DAC	16 bits	
Resolution (quantization)	Inline format	
0 V to 10 V	0 V to 10.837 V	0.333 mV/LSB
0 V to 5 V	0 V to 5.419 V	0.167 mV/LSB
±10 V	-10.837 V to +10.837 V	0.333 mV/LSB
±5 V	-5.419 V to +5.419 V	0.167 mV/LSB
Basic error limit Voltage: ±0.1% (typical) of the output range final value		range final value
Output load	$2 k\Omega$, minimum, $30 k\Omega$, typical	
Process data update including conversion time of the D/A converter	2 ms	
Slew rate (>99% of the final value)	< 1 ms at ohmic load	
Actuator cable length	250 m, maximum, using shielded cab 10 m, maximum, using unshielded ca	
Default		
Output range	±10 V	
Format	IB IL	
Behavior upon bus reset	HOLD (hold last value)	

Protective equipment		
Transient protection of analog outputs	Yes	
Short-circuit protection of analog outputs	Yes, for at least 1 minute	

Electrical isolation

Common potentials

The 24 V main voltage U_M, 24 V segment voltage U_S, and GND have the same potential. FE is a separate potential area.

Separate potentials in the terminal

Test distance	Test voltage
7.5 V supply voltage/ ±15 V	500 V AC, 50 Hz, 1 min.
7.5 V supply voltage (bus logic)/functional earth ground	500 V AC, 50 Hz, 1 min.
±15 V-, +5 V analog supply (analog I/O)/functional earth ground	500 V AC, 50 Hz, 1 min.

Error messages to the higher-level control or computer system Failure of the internal I/O voltage supply Failure of or insufficient communications power U_L Yes, I/O error message sent to the bus coupler Yes, I/O error message sent to the bus coupler

Signal rise times: voltage output 0 V to 10 V (typical values) 10% to 90% 0% to > 99% (including overshoots) No-load operation 9 μs 20 μs Ohmic load $R_L = 2 \text{ k}\Omega$ 10 μs 22 µs Ohmic/capacitive load $R_L = 2 k\Omega /$ 9 μs 28 μs $C_L = 10 \text{ nF (parallel)}$ Ohmic/capacitive load $R_L = 2 k\Omega /$ 71 µs 175 μs C_L = 220 nF (parallel) Ohmic/inductive load $R_L = 2 k\Omega /$ 9 μs 19 μs $L_L = 3.3 \text{ mH (serial)}$

Signal rise times: voltage output 0 V to	Signal rise times: voltage output 0 V to 5 V (typical values)									
	10% to 90%	0% to > 99% (including overshoots)								
No-load operation	8 µs	18 µs								
Ohmic load $R_L = 2 k\Omega$	9 µs	20 μs								
Ohmic/capacitive load $R_L = 2 k\Omega / C_L = 10 nF$ (parallel)	8 µs	26 μs								
Ohmic/capacitive load $R_L = 2 k\Omega / C_L = 220 nF$ (parallel)	29 μs	118 μs								
Ohmic/inductive load $R_L = 2 k\Omega /$ $L_1 = 3.3 \text{ mH (serial)}$	8 µs	20 µs								

Signal rise times: voltage output ±5 V (typical values)									
	10% to 90%	0% to > 99% (including overshoots)							
No-load operation	9 μs	19 µs							
Ohmic load $R_L = 2 k\Omega$	10 μs	20 μs							
Ohmic/capacitive load $R_L = 2 k\Omega / C_L = 10 nF$ (parallel)	9 μs	28 μs							
Ohmic/capacitive load $R_L = 2 k\Omega / C_L = 220 nF$ (parallel)	54 μs	150 μs							
Ohmic/inductive load R_L = 2 k Ω / L_L = 3.3 mH (serial)	9 μs	20 μs							

Signal rise times: voltage output ±10 V (typical values)									
	10% to 90%	0% to > 99% (including overshoots)							
No-load operation	12 µs	24 μs							
Ohmic load $R_L = 2 k\Omega$	13 µs	27 μs							
Ohmic/capacitive load $R_L = 2 k\Omega / C_L = 10 nF$ (parallel)	12 µs	32 µs							
Ohmic/capacitive load $R_L = 2 k\Omega / C_L = 220 nF$ (parallel)	117 μs	220 μs							
Ohmic/inductive load $R_L = 2 k\Omega / L_L = 3.3 \text{ mH (serial)}$	12 µs	24 μs							

Programming data Local bus (INTERBUS) ID code DF_{hex} (223_{dec}) Length code 05_{hex} Input address area 5 words Output address area 5 words Parameter channel (PCP) 1 words Register length (bus) 6 words

For the programming data/configuration data of other bus systems, please refer to the corresponding electronic device data sheet (e.g., GSD, EDS).

Approvals

For the latest approvals, please visit www.phoenixcontact.net/catalog.

4 Tolerance and temperature response

All percentage tolerance values refer to the relevant measuring range final value. Unless stated otherwise, nominal operation (nominal voltage, preferred mounting position, default format, identical measuring range setting for channels) is used as the basis. The tolerance values refer to the operating temperature range specified in the tables. The operable range outside this range is not taken into consideration. Please also observe the tolerances under influences of electromagnetic interference.

The maximum tolerance values represent the worst case measurement inaccuracy. They contain the theoretical maximum possible tolerances in the output range sections measuring ranges as well a the theoretical maximum possible tolerances of the calibration and test equipment.

Tolerance and temperature response										
The tolerance values refer to the	measuring range final value at	a typical load (30 kΩ).								
$T_A = 25^{\circ}C$										
Output range	Absolute (typical)	Absolute (maximum)	Relative (typical)	Relative (maximum)						
0 V to 5 V, ±5 V	±18 mV	±25 mV	±0.36%	±0.50%						
0 V to 10 V, ±10 V	±19 mV	±25 mV	±0.19%	±0.25%						
T _A = -25°C+55°C										
Output range	Absolute (typical)	Absolute (maximum)	ite (maximum) Relative (typical) Relative (m							
0 V to 5 V, ±5 V	±22 mV	±40 mV	±0.44%	±0.80%						
0 V to 10 V, ±10 V	±26 mV	±40 mV	±0.26%							
Additional tolerances in	nfluenced by electrom	agnetic fields								
Type of electromagneti	Type of electromagnetic interference Typical deviation of the output range final value (relative)									
Electromagnetic fields; field strer according to EN 61000-4-3/IEC 6			< ±0.5%							
Conducted interference Class 3 according to EN 61000-4-6/IEC 6			< ±0.5%							
Fast transients (burst), 4 kV suppaccording to EN 61000-4-4/IEC			< ±0.5%							

5 Tested successfully: Use under extreme ambient conditions

The terminal has been tested successfully over 250 temperature change cycles in accordance with IEC 61131-2 in the range from -40°C to +70°C.

The following conditions were observed:

- The Inline devices for all connecting cables were connected with a minimum conductor cross section of 0.5 mm²
- The Inline station was installed on a wall-mounted horizontal DIN rail
- Fans were used to ensure continuous movement of air in the control cabinet
- The Inline station was not exposed to vibration or shock
- The Inline station was operated with a maximum of 24.5 V (ensured by using regulated power supply units)

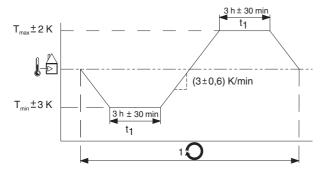


Figure 1 Temperature change cycle

Temperature in the control cabinet/ambient temperature

Cycle

WARNING:

The terminal is not approved for use in potentially explosive areas.

The terminal is not approved for use in safety technology.

6 Internal basic circuit diagram

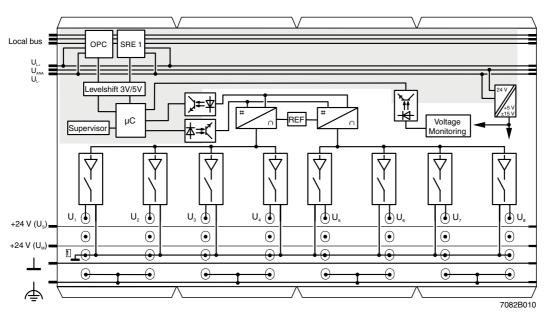


Figure 2 Internal wiring of the terminal points

Digital/analog converter

Key:

7 Electrical isolation

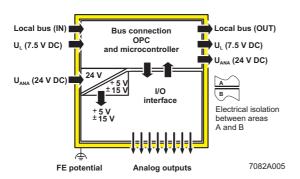


Figure 3 Electrical isolation of the individual function areas

8 Local diagnostic indicators

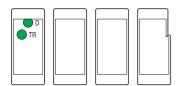


Figure 4 Local diagnostic indicators

Des.	Color	Meaning
D	Green	Diagnostics
TR	Green	PCP active

Function identification

Yellow

9 Terminal point assignment for each connector

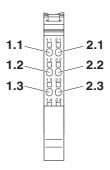


Figure 5 Terminal point assignment

Terminal points	Signal	Assignment
1.1	U ₁	Voltage output 1
2.1	U ₂	Voltage output 2
1.2, 2.2	-	Not used
1.3, 2.3	AGND	Ground of voltage outputs
1.4, 2.4	Shield	Shield connection

10 Installation instructions

High current flowing through potential jumpers U_M and U_S leads to a temperature rise in the potential jumpers and inside the terminal. To keep the current flowing through the potential jumpers of the analog terminals as low as possible, always place the analog terminals after all the other terminals at the end of the main circuit (for the sequence of the Inline terminals: see also IL SYS INST UM E user manual).

11 Connection notes

Analog actuators with a cable length of < 10 m can be connected using unshielded twisted-pair cables.

Connect analog actuators with a cable length of > 10 m using shielded twisted-pair cables.

At the terminal, connect one end of the shielding to PE. Fold the outer cable sheath back and connect the shield to the terminal via the shield connector clamp (with strain relief). The clamp connects the shield directly to FE on the terminal side.

Ensure that the braided shield is 15 mm longer than the strain relief when connecting a shielded actuator cable to the I/O connector. Connect the actuator cables as described in "Connecting shielded cables using the shield connector" on page 12.

12 Connection example

Use a connector with shield connection when installing the actuators. Figure 6 shows the connection schematically (without shield connector).

Connecting actuators

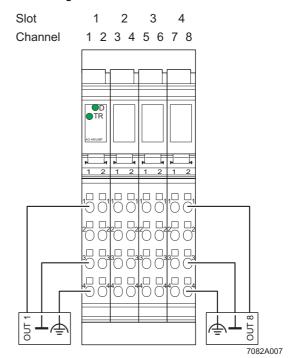


Figure 6 Connecting two actuators

13 Connecting shielded cables using the shield connector

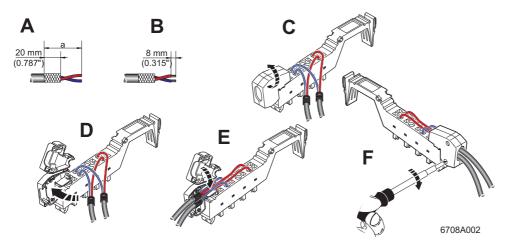


Figure 7 Connecting the shield using the shield connector

The diameter of the actuator cable is usually too large to allow the cables to be inserted into the strain relief of the shield connector with sheathed and folded shield. The connection procedure for this cable therefore differs from the connection procedure described in the user manual. The differences from the user manual are marked in bold text.

When connecting the cables, proceed as shown in Figure 7:

Stripping cables

- Strip the outer cable sheaths to the desired length (a).
 (A)
 - The desired length (a) depends on the connection position of the wires and whether the wires should have a large or small amount of space between the connection point and the shield connection.
- Shorten the braided shield to 20 mm (A).
- Do not fold the braided shield back over the outer sheath. (B)
- Remove the protective foil.
- Strip 8 mm off the wires. (B)

Inline wiring is normally without ferrules. However, it is possible to use ferrules. If you are using ferrules, make sure they are properly crimped.

Wiring connectors (according to the user manual)

- Push a screwdriver into the actuation shaft of the appropriate terminal point, so that you can insert the wire into the spring opening.
 - Phoenix Contact recommends the screwdriver SZF 1-0,6X3,5 (Order. No. 1204517).
- Insert the wire. Remove the screwdriver from the opening. This clamps the wire.

The connector pin assignment can be found in the table on page 10.

Connecting the shield

Open the shield connection (see user manual). (C)

- Insert the shield connection clamp in the shield connection according to the cable width (see user manual).
- Place the cables in the shield connection. (D)

 Push the outer cable sheaths up to the shield connection clamp. The wires with the braided shield must be underneath the shield connection clamp.

 The braided shield must project approximately 15 mm over the shield connection clamp.
- Close the shield connection. (E)
- Tighten the screws on the shield connection with a screwdriver. (F)

14 Process data

The device has five process data words and one PCP word.

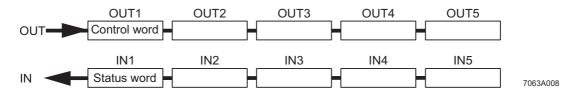


Figure 8 Order of the process data words

15 OUT process data

Five process data output words are available.

Configure the terminal channels via the OUT1 process data word.

If you change the configuration the corresponding channel is re-initialized. If the configuration is invalid, a corresponding error message is output in the status word. The configuration settings are stored in a volatile memory only.

15.1 Output word OUT1 (control word)

OUT1 Bit Assignment Command code Channel/output

Bit 15 to bit 8 (command code and channel/output):

Bit	Bit 15 to bit 12 Bit 11 to bit 8				bit 8		OUT1	Command function	
0	0	0	0	0	0	0	0	0000 _{hex}	All outputs are disabled
0	0	0	0	0	0	0	1	0100 _{hex}	Output at channels 1 to 4
0	0	0	0	1	0	0	1	0900 _{hex}	Output at channels 5 to 8
0	0	0	1	0	С	С	С	1x00 _{hex}	Read configuration in IN2 channel-by-channel.
0	0	1	1	1	1	0	0	3C00hex	Read firmware version and module ID in IN2.
0	1	0	0	0	С	С	С	4xyy _{hex}	Configure channel
0	1	0	1	0	0	0	1	5100 _{hex}	Output at channels 1 to 8 in 8-bit resolution
0	1	1	0	0	0	0	0	60yy _{hex}	Configure entire terminal (all channels)

CCC = Channel number; CCC = 000: Channel 1; CCC = 111: Channel 8; yy = Parameter for configuration

Control word assignment with command code 0_{hex}

OUT1 Bit Assignment Gr Z FAO

- 0 All outputs disabled
- 1 Outputs are set to the value specified last
- O Output value directly; the buffered values for the channels that are not addressed are also output
- Buffer value only
- 0 Channels 1 to 4
- 1 Channels 5 to 8

Gr Group

Z Buffering action

FAO Enabling the analog output channels

Output word assignment with command "Output at channels 1 to 8 in 8-bit resolution"

Word OUT 1

Byte 1 2

5100_{hex}

OU	T 2
3	4
Chan-	Chan-
nel 1	nel 2

OUT 3							
5	6						
Chan-	Chan-						
nel 3	nel 4						

OU	T 4
7	8
Chan-	Chan-
nel 5	nel 6

OU	IT 5
9	10
Chan-	Chan-
nel 7	nel 8

15.2 Parameters in output word OUT1

For command $4xyy_{hex}$ and $60yy_{hex}$ the parameters must be specified in OUT1 in addition to the command code. The parameters are only evaluated for these commands.

Bit

4xyy assignment 60yy assignment

	OUT1														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1									0					
0	0 1 0 0 0 K K K 0 AV Format Output range														
0	1	1	0	0	0	0	0	0	AV	For	mat	Output range			

AV Output behavior during bus reset

Format Representation of the output value in the OUT process data

Output range Output range settings

If invalid parameters are specified in the parameter word, the command will not be executed. The command is confirmed in the input words with the set error bit.

15.3 Parameters for configuration

The values displayed in bold are default settings.

Bit 6:

Co	de	Output behavior during bus reset
Dec	Bin	
0	0	Hold
1	1	Reset

Bit 5 and bit 4

Co	de	Format
Dec	Bin	
0	00	IB IL format (15 bits + sign bit with extended diagnostics)
1	01	IB ST format (12 bits + sign bit + 3 diagnostic bits)
2	10	S7-compatible format (15 bits + sign bit)
3	11	Standardized representation format

Bit 3 to bit 0:

C	ode	Output range
Dec	Bin	
0	0000	0 V to 10 V
1	0001	±10 V
2	0010	0 V to 5 V
3	0011	±5 V
4	0100	
		Reserved
15	1111	

16 IN process data

16.1 Input word IN1 (status word)

Five IN process data words are available.

The input word IN1 serves as status word.

Bit	
Assignment	

								IN	1							
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
E	EB Bits 14 to 8 of the control word are mirrored								0	0	0	0	0	0	0	0

EB: Error bit

EB = 0 No error has occurred.

EB = 1 An error has occurred.

Mirroring of the command code:

A command code mirrored from the control word. Here, the MSB is suppressed.

16.2 Input words IN2 to IN5

The mirrored output words, the configuration or the firmware version are transmitted to the controller board or the PC via the process data input words IN2 up to IN5 in accordance with the configuration.

For control word **3C00_{hex}**, IN2 provides the firmware version and the module ID.

Example: firmware version 1.23:

Bit
Assignment (hex)
Meaning

VCISI	011 1.2	0.													
	IN2														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 2 3 4 _{hex}														
	Firmware version 1.23											Modu	ıle ID		

17 Formats for representing output values

17.1 IB IL format (default setting)

The output value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

Output value representation in IB IL format; 15 bits

MSB															LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB							An	alog va	lue						

SB Sign bit

Typical analog values depending on the output range

INTERBUS	output word	0 V to 10 V	+/-10 V	0 V to 5 V	+/- 5 V
[hex]	[dec]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]
≤7FFF	≤32767	+10.837	+10.837	+5.419	+5.419
7F00	32512	+10.837	+10.837	+5.419	+5.419
7530	30000	+10.0	+10.0	+5.0	+5.0
0001	1	+333.33 μ	+333.33 μ	+166.67 μ	+166.67 μ
0000	0	≤0	0	≤0	0
FFFF	-1	0	-333.33 μ	0	-166.67 μ
8AD0	-30000	0	-10.0	0	-5.0
8100	-32512	0	-10.837	0	-5.419
80FF to 8000 (without 8001 and 8080)	-3276832513	HOLD	HOLD	HOLD	HOLD
8001	-32767 Overrange	+10.837	+10.837	+5.419	+5.419
8080	-32640 Underrange	0	-10.837	0	-5.419

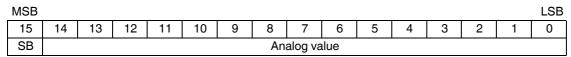
17.2 IB ST format

The output value is represented in bits 14 to 3. The remaining 4 bits are available as sign and error bits.

Output value representation in IB ST format; 12 bits

MSB															LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB						Analog	g value						0	0	0

SB Sign bit 0 Reserved


Typical analog values depending on the output range

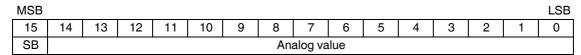
INTERBUS	output word	0 V to 10 V	+/-10 V	0 V to 5 V	+/- 5 V
[hex]	[dec]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]
≤7FFF	32767	9.9976	9.9976	4.9988	4.9988
7FF8	32760	9.9976	9.9976	4.9988	4.9988
4000	16384	5.00	5.00	2.50	2.50
0008	8	0.002441	0.002441	0.001221	0.001221
0000	0	0	0	0	0
FFF8	-8	0	-0.002441	0	-0.001221
C000	-16384	0	-5.0000	0	-2.5000
8008	-32760	0	-9.9976	0	-4.9988
≥8000	-32768	0	-9.9976	0	-4.9988

17.3 S7-compatible format

The output value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

Output value representation in the format compatible with S7 (15 bits)

SB Sign bit


Typical analog values depending on the output range

INTERBUS	Soutput word	0 V to 10 V	+/-10 V	0 V to 5 V	+/- 5 V
[hex]	[dec]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]
≤7FFF	≤32767	0	0	0	0
7F00	32512	0	0	0	0
7EFF	32511	+11.7589	+11.7589	+5.88	+5.88
6C01	27649	+10.0004	+10.0004	+5.0002	+5.0002
6C00	27648	+10.0000	+10.0000	+5.0000	+5.0000
5100	20736	+7.5000	+7.5000	+3.7500	+3.7500
1	1	+361.69 μ	+361.69 μ	+180.845 μ	+180.845 μ
0	0	0	0	0	0
FFFF	-1	0	-361.69 μ	0	-180.845 μ
E501	-6911	0	-2.4996	0	-1.2498
E500	-6912	0	-2.5000	0	-1.2500
AF00	-20736	0	-7.5000	0	-3.7500
9400	-27648	0	-10.0000	0	-5.0000
93FF	-27649	0	-10.0004	0	-5.0002
8101	-32511	0	-11.7589	0	-5.8800
8000 to 8100	-32768 to -32512	0	0	0	0

17.4 "Standardized representation" format

The output value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

Output value representation in "standardized representation" format (15 bits)

SB Sign bit

Typical analog values depending on the output range

INTERBUS	output word	0 V to 10 V	+/-10 V	0 V to 5 V	+/- 5 V
[hex]	[dec]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]	U _{Output} [V]
2A56 to 7FFF	10838 to 32767	+10.837	+10.837	+5.419	+5.419
2A55	10837	+10.837	+10.837	+5.419	+5.419
2710	10000	+10.0	+10.0	+5.419	+5.419
152B	5419	+5.419	+5.419	+5.419	+5.419
1388	5000	+5.0	+5.0	+5.0	+5.0
0001	1	+0.001	+0.001	+0.001	+0.001
0000	0	0	0	0	0
FFFF	-1	0	-0.001	0	-0.001
EC78	-5000	0	-5.0	0	-5.0
EAD5	-5419	0	-5.419	0	-5.419
D8F0	-10000	0	-10.0	0	-5.419
D5AB	-10837	0	-10.837	0	-5.419
D5AA to 8100	-10838 to -32512	0	-10.837	0	-5.419
80FF to 8000 (with- out 8001 and 8080)		HOLD	HOLD	HOLD	HOLD
8001	-32767 Overrange	+10.837	+10.837	+5.419	+5.419
8080	-32640 Underrange	0	-10.837	0	-5.419

18 Configuration and analog value transmission

You can configure the terminal **either** via process data **or** via PCP and transmit the analog values accordingly.

Example for terminal configuration via process data

All channels are to hold their value (HOLD), use the IB IL format and output the values in the range 0 V to 5 V. Therefore the parameter value is 0002_{hex} .

Step	Process data	Meaning
1	OUT1 = 6002 _{hex}	Specify configuration
2	Wait until IN1 = 6002 _{hex}	Wait for confirmation
3	Analog value OUT2 = Channel 1,, OUT5 = Channel 4 OUT1 = 0100 _{hex}	Analog value output at channels 1 to 4
4	Wait until IN1 = 0100 _{hex}	Wait for confirmation
5	Analog value OUT2 = Channel 5,, OUT5 = Channel 8 OUT1 = 0900 _{hex}	Analog value output at channels 5 to 8
6	Wait until IN1 = 0900 _{hex}	Wait for confirmation

i

Secure process data transmission requires process data consistency of five words.

In the event that consistency of five words cannot be ensured, an intermediate step is recommended after every output command. The buffer bit in the "Write analog values" command is used for this purpose. As a result, step 3 and step 5 become more complicated:

Step	Process data	Meaning					
1	OUT1 = 6002 _{hex}	Specify configura- tion					
2	Wait until IN1 = 6002 _{hex}	Wait for confirmation					
3a	$OUT1 = 0300_{hex}$	Buffer command					
3b	Wait until IN1 = 0300 _{hex}	Wait for confirma- tion					
3c	OUT2 = analog value of chan- nel 1 OUT3 = analog value of chan- nel 2 OUT4 = analog value of chan- nel 3 OUT5 = analog value of chan- nel 4	Buffer the analog values for chan- nels 1 to 4					
3d	OUT1 = 0100 _{hex}	Output the analog values for channels 1 to 4					
4	Wait until IN1 = 0100 _{hex}	Wait for confirmation					
5a	OUT1 = 0B00 _{hex}	Buffer command					
5b	Wait until IN1 = 0B00 _{hex}	Wait for confirmation					
5c	OUT2 = analog value of chan- nel 5 OUT3 = analog value of chan- nel 6 OUT4 = analog value of chan- nel 7 OUT5 = analog value of chan- nel 8	Buffer the analog values for chan- nels 5 to 8					
5d	OUT1 = 0900 _{hex}	Output the analog values for channels 5 to 8					
6	Wait until IN1 = 0900 _{hex}	Wait for confirmation					

19 PCP communication

For information on PCP communication, please refer to the IBS SYS PCP G4 UM E (Order No. 2745169) and IBS PCP COMPACT UM E (Order No. 9015349) user manuals.

By default upon delivery, the terminal is configured according to the default settings on page 15. The terminal can be configured to suit your application using process data or PCP.

In PCP mode, the terminal is configured with the "Config Table" object.

The IBS CMD (for standard controller boards) and PC Worx (for Field Controllers (FC) and Remote Field Controllers (RFC)) programs are available for the configuration and parameterization of your INTERBUS system. Please refer to the corresponding documentation for more information.

19.1 Object dictionary

Index	Data type	N	L	Meaning	Object name	Rights
0080 _{hex}	Array of Unsigned 16	10	2	Terminal configuration	Config Table	rd/wr
0085 _{hex}	Array of Unsigned 16	8	2	Analog values of the chan- nels	Analog Out Values	rd/wr

N: Number of elementsL: Length of an element in bytesRead access permittedWr: Write access permitted

19.2 Object descriptions

Config Table object

Configure the terminal using this object.

Object description:

Object	Config Table							
Access	Read, Write							
Data type	Array of Unsigned 16	10 x 2 bytes						
Index	0080 _{hex}							
Subindex	00hexWrite all elements01hexConfiguration of channel 102hexConfiguration of channel 203hexConfiguration of channel 304hexConfiguration of channel 405hexConfiguration of channel 506hexConfiguration of channel 607hexConfiguration of channel 708hexConfiguration of channel 809hexSystem settings0AhexReserved							
Length (bytes)	14 _{hex} Subindex 00 _{hex} 02 _{hex} Subindex 01 _{hex} to 0A _{hex}							
Data	Terminal configuration							

Element value range

The "Configuration channel x" elements have the following structure:

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0	0	0	0	0	0	0	0	0	AV	For	mat	(Output	range	

For the value ranges of the individual parameters, please refer to "Parameters for configuration" on page 15.

If an invalid configuration is specified, a negative confirmation is generated with error message 08_{hex} , 00_{hex} or $xx30_{\text{hex}}$. The low byte of the additional error code is 30_{hex} (value is out of range), the high byte contains the number of the affected element.

Example: Config Table is completely filled with data (subindex 00) and the entry for channel 6 is invalid. In this case, the additional error code equals 0630_{hex} .

Additional functions in element 9 (system settings):

0001_{hex}: Configuration via process data not locked

0002_{hex}: Writing of the "Analog Out Values" object is permitted.

Analog Out Values object

The elements of this object contain the analog values of the channels in a format that has been selected for this channel.

Writing to this object must be enabled in the Config Table object. Write value 0002_{hex} to subindex 09 in the "Config Table" object for this purpose.

Object description:

Object	Analog Values								
Access	Read/Write								
Data type	Array of Unsigned 16	8 x 2 bytes							
Index	0085 _{hex}								
Subindex	00hexRead/write all elements01hexAnalog value of channel 102hexAnalog value of channel 203hexAnalog value of channel 304hexAnalog value of channel 405hexAnalog value of channel 506hexAnalog value of channel 607hexAnalog value of channel 708hexAnalog value of channel 8								
Length (bytes)	10 _{hex} Subindex 00 _{hex} Subindex 01 _{hex} to 08 _{hex}								
Data	Analog values of the channels								