: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

IB IL 24/48 DOR 2/W-XC-PAC

Inline digital output terminal, version for extreme conditions, 2 relay PDTs

Data sheet

8463_en_01
© PHOENIX CONTACT 2015-08-12

1 Description

The terminal is designed for use within an Inline station. It has two floating relay PDTs which are independent of each other.
Thanks to special engineering measures and tests, the terminal can be used under extreme ambient conditions.

Features

- Two relay outputs
- Floating connections for 2 actuators
- Nominal current of each output: 2 A
- Total current of the terminal: 4 A
- Segment voltage U_{S} connected
- Diagnostic and status indicators
- Can be used under extreme ambient conditions
- Extended temperature range of $-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ (see "Tested successfully: use under extreme ambient conditions")
- Painted PCBs

WARNING: Undefined system state
By default, the position of the relay contacts on the module is not defined. To prevent undesired system states, perform a complete cycle (on/off) before connecting the segment voltage.

This data sheet is only valid in association with the IL SYS INST UM E user manual.
i
Make sure you always use the latest documentation. It can be downloaded from the product at phoenixcontact.net/products.

2 Table of contents
1 Description 1
2 Table of contents 2
3 Ordering data 3
4 Technical data 3
5 Additional tables 6
5.1 Maximum switching current for ohmic load depending on the switching voltage 6
5.2 Power dissipation 6
5.3 Limitation of simultaneity, derating 7
5.4 Air clearances and creepage distances 7
6 Tested successfully: Use under extreme ambient conditions 8
7 Internal circuit diagram 9
8 Special features of the terminal 9
8.1 Switching a voltage equal to the segment voltage 9
8.2 Switching a voltage unequal to the segment voltage 9
9 Local status and diagnostic indicators 10
10 Terminal point assignment 10
11 Connection notes and examples 11
12 Process data 11

3 Ordering data

Description
Inline digital output terminal, version for extreme conditions, complete with
accessories (connector plug and labeling field), 2 relay PDTs, gold con-
tact, $5-48 \mathrm{VDC}, 2 \mathrm{~A}$

Accessories	Type	Order No.	Pcs./Pkt.
Labeling field, width: 12.2 mm (Marking)	IB IL FIELD 2	2727501	10
Insert strip, Sheet, white, unlabeled, can be labeled with: Office printing systems, Plotter: Laser printer, Mounting type: Insert, Lettering field: 62 x 10 mm (Marking)	ESL 62X10	0809492	1
Connector, for digital 1,2 or 8-channel Inline terminals (Connector/ Adapter)	IB IL SCN-8	2726337	10
Zack Marker strip, flat, Strip, white, unlabeled, can be labeled with: Plotter, Mounting type: Snap into flat marker groove, for terminal block width: 6.2 mm , Lettering field: $5.15 \times 6.15 \mathrm{~mm}$ (Marking)	ZBF 6:UNBEDRUCKT	0808710	10
Zack Marker strip, flat, white, for terminal block width: 6.2 mm (Marking)	ZBF 6:SO/CMS	0808778	1
Flat zack marker sheet, white, for terminal block width: 6.2 mm (Marking)	ZBFM 6:SO/CMS	0803650	1
Flat zack marker sheet, Sheet, white, unlabeled, can be labeled with: Plotter, Mounting type: Snap into flat marker groove, for terminal block width: 6.2 mm , Lettering field: $5 \times 5.5 \mathrm{~mm}$ (Marking)	ZBFM 6/WH:UNBEDRUCKT	0803618	10
Inline distance terminal, complete with accessories	IB IL DOR LV-SET-PAC	2861645	1
Documentation	Type	Order No.	Pcs./Pkt.
Application note, English, The safety-related segment circuit	aHENIL SAFE	-	-
Data sheet, English, INTERBUS addressing	DB GB IBS SYS ADDRESS	-	-
Application note, English, Using distance terminal blocks and interference suppression measures on inductive loads	AH EN IBIL DOR	-	-

4 Technical data

Dimensions (nominal sizes in mm)

Width	12.2 mm
Height	119.8 mm
Depth	71.5 mm
Note on dimensions	Housing dimensions

General data	
Color	green
Weight	63 g (with connector)
Operating mode	Process data mode with 2 bits
Ambient temperature (operation)	$-25^{\circ} \mathrm{C} . .55^{\circ} \mathrm{C}$ (Standard) $-40^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ (Extended, see section "Tested successfully: use under extreme ambient conditions" in the data sheet.)
Ambient temperature (storage/transport)	$-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
Permissible humidity (operation)	10 \% ... 95 \% (according to DIN EN 61131-2)
Permissible humidity (storage/transport)	10 \% ... 95 \% (according to DIN EN 61131-2)
Air pressure (operation)	$70 \mathrm{kPa} \ldots 106 \mathrm{kPa}$ (up to 3000 m above sea level)
Air pressure (storage/transport)	$70 \mathrm{kPa} . . .106 \mathrm{kPa}$ (up to 3000 m above sea level)
Degree of protection	IP20
Protection class	III, IEC 61140, EN 61140, VDE 0140-1
Connection data	
Designation	Inline connector
Connection method	Spring-cage connection
Conductor cross section solid / stranded	$0.08 \mathrm{~mm}^{2} \ldots 1.5 \mathrm{~mm}^{2} / 0.08 \mathrm{~mm}^{2} \ldots 1.5 \mathrm{~mm}^{2}$
Conductor cross section [AWG]	$28 . .16$
Stripping length	8 mm
Interface Inline local bus	
Connection method	Inline data jumper
Transmission speed	$500 \mathrm{kBit} / \mathrm{s}$
Power consumption	
Communications power U_{L}	7.5 V DC
Current consumption from U_{L}	max. 30 mA
Power consumption	$0.23 \mathrm{~W}\left(\right.$ at $\left.\mathrm{U}_{\mathrm{L}}\right)$
Relay output	
Number of outputs	2
Connection method	Spring-cage connection
Connection method	Floating SPDT relay contact
Nominal output voltage	48 V DC
Output voltage range	$\begin{aligned} & 5 \mathrm{~V} \text { AC ... } 30 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~V} \text { DC ... } 60 \mathrm{~V} \text { DC } \end{aligned}$
Maximum output current per channel	2 A
Contact type	2 floating PDT contacts
Contact material	AgSnO_{2}, hard gold-plated
Contact resistance	$75 \mathrm{~m} \Omega$
Switching voltage	min .10 mV (DC) max. 30 V AC (PELV (EN 61131)) max. 60 V DC (PELV (EN 61131))
Switching current	$\begin{aligned} & \min .10 \mu \mathrm{~A} \\ & 2 \mathrm{~A}(30 \mathrm{~V} D) \\ & 1 \mathrm{~A}(60 \mathrm{~V}) \end{aligned}$
Limiting continuous current	2 A (at maximum ambient temperature)
Switching capacity	$\begin{aligned} & 60 \mathrm{~W} \\ & 62.5 \mathrm{VA} \text { (ohmic) } \end{aligned}$
Switching frequency	1 Hz (without load) ; 1 Hz (with load)
Nominal power consumption	200 mW

[^0]
5 Additional tables

5.1 Maximum switching current for ohmic load depending on the switching voltage

Switching voltage (V DC)	Switching current (A)
10	2.0
20	2.0
30	2.0
60	1.0

Load current I_{L} as a function of the switching voltage U_{S}

Figure 1 Load current I_{L} as a function of the switching voltage U_{S}

1 DC, ohmic load
2 AC, ohmic load
Number of operations \mathbf{N} as a function of the load current I_{L}

Figure 2 Number of operations N as a function of the load current I_{L}

130 V DC, ohmic load
2125 V AC, ohmic load

5.2 Power dissipation

Formula for calculating the power dissipation of the electronics
$P_{E L}=0,23 \mathrm{~W}+m \times 0,14 \mathrm{~W}+\sum_{i=1}^{n}\left(I_{L i}{ }^{2} \times 0,075\right)$

Where:
$\mathrm{P}_{\mathrm{EL}} \quad$ Total power dissipation in the terminal
i Continuous index
n Number of set outputs ($\mathrm{n}=1 \ldots 2$)
$\mathrm{m} \quad$ Number of relays with controlled coil
$\mathrm{I}_{\mathrm{Li}} \quad$ Load current of output i

Power dissipation of the housing
$\mathrm{P}_{\mathrm{HOU}}=1.2 \mathrm{~W} \quad-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {HOU }}=1.2 \mathrm{~W}-\left[\left(\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right) \times 0.02 \mathrm{~W} /{ }^{\circ} \mathrm{C}\right]$
$+25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+55^{\circ} \mathrm{C}$

Where:
$\mathrm{P}_{\mathrm{HOU}} \quad$ Power dissipation of the housing
$\mathrm{T}_{\mathrm{A}} \quad$ Ambient temperature
5.3 Limitation of simultaneity, derating

Derating when using the N / O contact			
Ambient temperature $\mathrm{T}_{\text {amb }}$	Power dissipation of the	Maximum load current	
	housing	$\mathbf{1 0 0} \%$ simultaneity	$\mathbf{5 0} \%$ simultaneity
$\leq 40^{\circ} \mathrm{C}$	0.9 W	2.0 A	2.0 A
$\leq 55^{\circ} \mathrm{C}$	0.6 W	1.0 A	2.0 A

5.4 Air clearances and creepage distances

| Air clearances and creepage distances (according to EN | | | 50178, VDE 0109, VDE 0110) |
| :--- | :--- | :--- | :--- | :--- |
| Isolating distance | Clearance | Creepage distance | Test voltage |
| Relay contact/bus logic | $\geq 1.5 \mathrm{~mm}$ | $\geq 1.5 \mathrm{~mm}$ | $1.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. |
| Contact/contact | $\geq 1.5 \mathrm{~mm}$ | $\geq 1.5 \mathrm{~mm}$ | $1.0 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. |
| Contact $/ P \mathrm{PE}$ | $\geq 3.1 \mathrm{~mm}$ | $\geq 3.1 \mathrm{~mm}$ | $1.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. |
| Relay $/$ relay | None | | |

6 Tested successfully: Use under extreme ambient conditions

XC terminals have been tested successfully over 250 temperature change cycles in accordance with IEC 61131-2 in the range from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
The following conditions were observed:

- The Inline devices for all connecting cables were connected with a minimum conductor cross section of $0.5 \mathrm{~mm}^{2}$
- The Inline station was assembled on a wall-mounted horizontal DIN rail
- Fans were used to ensure continuous movement of air in the control cabinet
- The Inline station was not exposed to vibration or shock
- The Inline station was operated with a maximum of 24.5 V (ensured by using regulated power supply units)

Figure 3 Temperature change cycle

Temperature in the control cabinet/ambient temperature
\checkmark
Cycle

WARNING:
The terminal is not approved for use in potentially explosive areas.
The terminal is not approved for use in safety technology.

7 Internal circuit diagram

68501003
Figure 4 Internal wiring of the terminal points
Key:

Protocol chip
(Bus logic including voltage conditioning)

Relay

Electrically isolated area
I/O area including relay contact isolated from the logic area including the relay coil

Explanation for other used symbols has been provided in the IL SYS INST UM E user manual.

8 Special features of the terminal

See also the information in the AH EN IB IL DOR application note.

8.1 Switching a voltage equal to the segment voltage

The potential U_{S} is available at terminal points 1.1 and 1.2. If you insert a jumper between 1.1 and 1.3 or 2.1 and 2.3 , you connect the segment voltage potential to the main contact of the relevant relay and can therefore switch the connected load in a non-isolated manner.
If you do not insert a jumper, you can switch the load in a floating manner.

8.2 Switching a voltage unequal to the segment voltage

Different DC voltages

Distance terminals are not required.
Only floating switching of the load is permitted. Do not, therefore, attach any jumpers to the connector.

If the switch contact potentials and the segment circuit potential are two different DC circuits, Phoenix Contact recommends establishing a ground connection between the two power supply units.

Switching an AC voltage within a DC segment circuit

Place distance terminals in front of and behind the relay terminal block.
The distance terminals interrupt the potential jumpers. As a result, no segment voltage is present at terminal points 1.1 and 2.1. It is only possible to switch the connected load in a floating manner.

9 Local status and diagnostic indicators

Figure 5 Local status and diagnostic indicators

Designa- tion	Color	Meaning
D	Green	Diagnostics (bus and logic volt- age)
$1 \ldots 2$	Yellow	Status of the outputs (relay has picked up)

Function identification

Pink
Housing/connector color
Green housing
Green, unprinted connector

10 Terminal point assignment

Figure 6 Terminal point assignment

Terminal point	Assignment	
$1.1 / 2.1$	Segment voltage U	
S		
1.2	Relay N/C contact	Relay 1
1.3	Relay main contact	Relay 1
1.4	Relay N/O contact	Relay 1
2.2	Relay N/C contact	Relay 2
2.3	Relay main contact	Relay 2
2.4	Relay N/O contact	Relay 2

11 Connection notes and examples

NOTE: Damage to the electronics

Use the terminal within the PELV range (EN 61131) up to a maximum of 30 V AC or 60 V DC.

Figure 7 Actuator connection; floating connection

Figure 9 Output relay contacts

12 Process data

Assignment of the terminal points to the output process data

(Byte.Bit) view	$\mathbf{0 . 1}$	$\mathbf{0 . 0}$	N/O contact 2 (contact 2.4)	N/O contact 1 (contact 1.4)
Possible bit combinations	0	0	open	open
	0	1	open	closed
	1	0	closed	open
	1	1	closed	closed
Status indicator	LED	2	1	

The LED lights up if the corresponding N/O contact is closed.

For the assignment of the illustrated (byte.bit) view to your INTERBUS control or computer system, please refer to the DB GB IBS SYS ADDRESS data sheet.

Figure 8 Actuator connection; non-isolated connection

[^0]: Approvals
 For the latest approvals, please visit phoenixcontact.net/products.

