imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IB IL TEMP 4/8 RTD-EF-XC-PAC

Inline Modular analog input terminal, version for extreme conditions, 8 inputs, RTD

Data sheet

8466_en_01

© PHOENIX CONTACT 2012-05-08

1 Function description

The terminal is designed for use within an Inline station. This terminal provides an 8-channel input module with three linear resistance ranges for resistance temperature detectors.

This terminal supports, for example:

- Platinum and nickel sensors, e.g., Pt100, Pt1000, Ni100, and Ni1000 according to the DIN IEC 60751 standard and to the SAMA RC 21-4-1966 guideline
- KTY81 and KTY84 sensors
- Cu10, Cu50, and Cu53 sensors
- Communication either via
- Parameter channel (PCP), all eight measuring channels, or
- Four process data words; always four channels (four 16-bit values) using the multiplex method

Thanks to special engineering measures and tests, the terminal can be used under extreme ambient conditions.

Features

- Connection of eight RTD temperature sensors and linear resistors in 4-wire technology
- High precision and noise immunity
- Temperature stability
- High-resolution temperature and resistance measurement
- Resistance values (R₀) can be preset separately using configuration bits
- Channels are configured independently of one another using the bus system.
- Configuration of open circuit detection sensitivity (firmware 1.10 or later)
- Additional representation in float format according to IEEE 754
- Diagnostic and status indicators
- Channel scout functionality, e.g., for optical channel identification during startup
- Can be used under extreme ambient conditions
- Painted PCBs
- Extended temperature range T2 (-40°C ... +55°C)

i]	This data sheet is only valid in association with the IL SYS INST UM E user manual.	
•		Make sure you always use the latest documentation.	
		It can be downloaded at <u>www.phoenixcontact.net/catalog</u> .	

Table of contents

1	Function description1
2	Ordering data3
3	Technical data 4
4	Tolerance and temperature response7
5	Tested successfully: Use under extreme ambient conditions9
6	Internal basic circuit diagram10
7	Local diagnostic and status indicators and terminal point assignment11
8	Safety note11
9	Installation instructions11
10	Electrical isolation
11	Connection notes12
12	Connection examples12
13	Process data15
14	OUT process data words15
15	IN process data words19
16	Formats for representing measured values20
17	PCP communication
18	Object descriptions
19	Configuration and analog values27
20	Temperature and resistance measuring ranges27
21	Measuring errors due to connection cables27
22	Calculation examples
23	Configuration example
24	Notes on diagnostic behavior in the event of an error

2 Ordering data

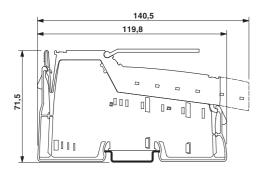
Products

Description	Туре	Order No.	Pcs. / Pkt.
Inline Modular analog input terminal, version for extreme conditions, 8 inputs, RTD (resistance temperature detector), 4-wire connection method, complete with individually numbered I/O connectors		2701218	1

Accessories: Connectors

Description	Туре	Order No.	Pcs. / Pkt.	
Inline connectors	IB IL SCN-8	2726337	10	
Labeling field, 12.2 mm width	IB IL FIELD 2	2727501	5	
Insert strip, sheet, white, unlabeled, can be labeled with: Office printing systems, plotter: laser printer, Mounting type: insertion, lettering field size: 62 x 10 mm	ESL 62X10	0809492	1	

Accessories: Other


Description	Туре	Order No.	Pcs. / Pkt.
Shield connection clamp for applying the shield on busbars			
8 mm diameter	SK8	3025163	10
14 mm diameter	SK14	3025176	10
20 mm diameter	SK20	3025189	10
35 mm diameter	SK35	3026463	10
Support for assembly on DIN rails for 10 mm x 3 mm busbars	AB-SK	3025341	10
Support for direct mounting with contact to the mounting surface	AB-SK 65	3026489	10
Support, made of insulation material, with fixing screws, can be used for either 10 mm x 3 mm or 6 mm x 6 mm busbars	AB-SK/E	3026476	10
N busbar, 10 mm x 3 mm, 1 m long	NLS-CU 3/10	0402174	10
End terminal, 4 mm ² , without insulating cap	AK 4	0404017	50
End terminal, 4 mm ² , with insulating cap, green-yellow for PE	AK G GNYE	0421029	50
End terminal, 4 mm ² , with insulating cap, black for L1, L2, L3	AKG 4 BK	0421032	50

Documentation

Description	Туре	Order No.	Pcs. / Pkt.
"Automation terminals of the Inline product range" user manual	IL SYS INST UM E	-	-

3 Technical data

Dimensions (nominal sizes in mm)

Housing dimensions (width x height x depth)

General data	
Color	Green
Weight	190 g (with connectors)
Operating mode	Process data mode with 5 words/1 word PCP
Connection method for sensors	4-wire technology
Ambient temperature (operating)	-40 °C +60 °C (see also the "Tested successfully: Use under extreme ambient conditions" section of the data sheet).
Permissible ambient temperature (storage/transport)	-40 °C +85°C
Temperature class	T2 (-40°C +55°C, IEC 50155)
Permissible humidity (operation/storage/transport)	10% 95%, according to DIN EN 61131-2
Permissible air pressure (operation/storage/transport)	70 kPa 106 kPa (up to 3000 m above sea level)
Degree of protection according to IEC 60529	IP20
Class of protection	III, IEC 61140, EN 61140, VDE 0140-1
Connection data	
Designation	Inline connector
Connection method	Spring-cage connection
Conductor cross section, solid/stranded	$0.08 \text{ mm}^2 \dots 1.5 \text{ mm}^2$
Conductor cross section [AWG]	28 16
Inline local bus interface	
Connection method	Inline data jumper
Transmission speed	500 kbps
Supply of the module electronics and I/O through bus	coupler/power terminal
Connection method	Potential routing
Power consumption	
Communications power UL	7.5 V
Current consumption from UL	95 mA (typical)
I/O supply voltage U _{ANA}	24 V DC
Current consumption at UANA	6.0 mA (typical)
Total power consumption	0.85 W (typical)

48.8 x 119.8 x 71.5 mm

Analog inputs					
Number		Eight inputs (4-wire RTD) for resistive temperature detectors			
Resolution of the analog/digital converter		24 bits			
Measured value representation		16 bits (IL standard 15	bits + sign bit)		
Standardized representation for		Degrees Celsius (°C), c (Ω)	legrees Fahrenheit (°F) and as linear resistance in Ohm		
Resolution (quantization)		Standardized represen	Standardized representation of temperature measurement values		
In the °C range		0.1 K/LSB (default sett	ing)		
		0.01K/LSB			
In the °F range		0.1°F/LSB			
		0.01°F/LSB			
In the linear Ohm range		0.01 Ω/LSB			
		0.1 Ω/LSB			
		1 Ω/LSB			
Connection of signals		4-wire, shielded sensor cable (e.g., LiYCY (TP))			
Maximum permissible cable length		250 m (4-wire connection with LiYCY (TP) 2 x 2 x 0.5 mm ²)			
Crosstalk attenuation (channel/channel) in the	e sensor type operating mode	:			
Pt100 (resolution 0.01 K/LSB)		98.6 dB, typical			
R _{LIN} 500 (resolution 0.01Ω/LSB)		100 dB, typical			
R _{LIN} 5000 (resolution 0.1Ω/LSB)		88 dB, typical			
Sensor types that can be used		Pt, Ni, Cu, KTY, linear resistors			
Standards for characteristic curves		According to DIN EN 60751: 07/1996/ according to SAMA RC 21-4-1966			
Process data update		Depending on the filter time			
Scan filter times					
Set filter time Typical scant measuring ch			Typical scan repeat time for all eight measuring channels		
480 ms (default)	482 ms		3300 ms		
200 ms	201 ms		2190 ms		
120 ms	121 ms		1874 ms		
100 ms	100 ms		1800 ms		

100 ms	100 ms	1800 ms		
Differential non-linearity (typical)				
In all ranges	1 ppm or ±0.0001%			
Integral non-linearity (typical)				
In the input ranges				
Pt100	30 ppm or ±0.003%			
R _{Lin} 500 Ω	20 ppm or ±0.002%			
R_{Lin} 5000 Ω	200 ppm or ±0.02%			
Supported measuring ranges				
Sensor type	Standard or manufacturer	Measuri	Measuring range	
	specification	Lower limit	Upper limit	
Pt sensors (e.g., Pt100, Pt500, Pt1000)	DIN IEC 60751 or SAMA RC 21-4-1966	-200°C	+850°C	
Ni sensors (e.g., Ni100, Ni1000)	DIN IEC 60751 or SAMA RC 21-4-1966	-60°C	+180°C	
Ni500 (Viessmann)	(Viessmann)	-60°C	+250°C	
Ni1000 (Landis & Gyr)	(Landis & Gyr)	-50°C	+160°C	
KTY81-110	(Philips)	-55°C	+150°C	
KTY81-210	(Philips)	-55°C	+150°C	

(Philips)

SAMA RC 21-4-1966

KTY84

Cu10

+300°C

+500°C

-40°C

-70°C

Supported measuring ranges (continued)				
Sensor type	Standard or manufacturer	Measuri	Measuring range	
	specification	Lower limit	Upper limit	
Cu50	SAMA RC 21-4-1966	-50°C	+200°C	
Cu53	SAMA RC 21-4-1966	-50°C	+180°C	
Linear resistor R_{Lin} 500 Ω (linear range 1)		0 Ω	525 Ω	
Linear resistor R_{Lin} 5000 Ω (linear range 2)		0 Ω	5250 Ω	
Linear resistor ${\sf R}_{\sf Lin}$ 30000 Ω (linear range 3)		0 Ω	31500 Ω	

Common mode rejection with different filter times

Filter process data encoding	Filter time	Optimization for common mode interference with F _{Interfer}	Typical common mode rejection for measuring inputs of analog/digital converters (CMRR)
00	480 ms	50 Hz and 60 Hz	74 dB
01	120 ms	50 Hz	80 dB
10	101 ms	60 Hz	90 dB
11	200 ms	50 Hz and 60 Hz	69 dB

Protective equipment

Transient protection			
Measuring inputs	Yes		
Sensor supply	Yes		

Electrical isolation/isolation of the voltage areas

To provide electrical isolation between the logic level and the I/O area, it is necessary to supply the station bus coupler and the sensors connected to the analog input terminal described here from separate power supply units. Interconnection of the power supply units in the 24 V area is not permitted (see also IL SYS INST UM E user manual).

Common potentials

The 24 V main voltage, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.

Separate potentials in the system consisting of bus coupler/power terminal and I/O terminal								
- Test voltage								
500 V AC, 50 Hz, 1 min								
500 V AC, 50 Hz, 1 min								
500 V AC, 50 Hz, 1 min								
500 V AC, 50 Hz, 1 min								
500 V AC, 50 Hz, 1 min								

Error messages to the higher-level control or computer system

Failure of the internal, electrically isolated I/O voltage supply	Yes, peripheral fault message
Failure of or insufficient communications power UL	Yes, peripheral fault message

Error messages via process data

Peripheral fault/user error

Yes (see Section 16 "Formats for representing measured values")

Programming data	
Local bus (INTERBUS)	
ID code	DF _{hex} (223 _{dec})
Length code	05 _{hex}
Input address area	10 bytes
Output address area	10 bytes

Programming data									
Parameter channel (PCP)	2 bytes								
Register length (bus)	12 bytes								
For the programming data/configuration data of other bus systems, please refer to the corresponding electronic device data sheet (e.g., GSD, EDS).									
PROFIBIIS telegram data									

Required parameter data	31 bytes
Required configuration data	5 bytes

Approvals

i

For the latest approvals, please visit www.phoenixcontact.net/catalog.

4 Tolerance and temperature response

The percentage tolerance values refer to the respective positive measuring range final value. Unless stated otherwise, nominal operation (nominal voltage, preferred mounting position, default format, default filter setting, identical measuring range setting for channels) is used as the basis. The tolerance values refer to the operating temperature range specified in the tables. The operable range outside this range is not taken into consideration. Please also observe the values for temperature drift and the tolerances under influences of electromagnetic interference.

The maximum tolerance values represent the worst case measurement inaccuracy. They contain the theoretical maximum possible tolerances in the corresponding measuring ranges as well a the theoretical maximum possible tolerances of the calibration and test equipment.

Tolerances (typical/maximum) at T _A = +25°C									
Sensor type (4-wire connection)		ng range al range)	Absolute	tolerance	Relative tolerance (of mea- suring range final value)				
	Lower limit	Upper limit	Typical	Maximum	Typical	Maximum			
Pt100	-200°C	+200 °C ¹⁾	± 0.05 K	± 0.19 K	± 0.03% ²⁾	± 0.10% ²⁾			
Pt100	-200°C	+850°C	± 0.09 K	± 0.34 K	± 0.01%	± 0.04%			
Pt1000	-200°C	+850°C	± 0.29 K	± 0.61 K	± 0.03%	± 0.07%			
Ni100	-60°C	+180°C	± 0.04 K	± 0.10 K	± 0.02%	± 0.05%			
Ni1000	-60°C	+180°C	± 0.09 K	± 0.39 K	± 0.05%	± 0.22%			
Ni1000 (Landis & Gyr)	-50°C	+160°C	± 0.09 K	± 0.43 K	± 0.06%	± 0.27%			
KTY81-110	-55°C	+150°C	± 0.08 K	± 0.34 K	± 0.06%	± 0.27%			
KTY81-210	-55°C	+150°C	± 0.05 K	-	± 0.03%	-			
Linear resistance R_{Lin} 500 Ω	0 Ω	500 Ω	± 0.12 Ω	\pm 2.05 Ω	± 0.02%	± 0.41%			
Linear resistance $R_{Lin}5000\Omega$	0 Ω	5000 Ω	± 1.50 Ω	± 10.2 Ω	± 0.03%	± 0.20%			
Linear resistance R_{Lin} 30000 Ω	0Ω	30000 Ω	No data	No data	± 3%	No data, since this range is not cali- brated			

The data contains the offset error, gain error, and linearity error in its respective setting (4-wire technology).

See separate table for additional temperature values and possible tolerances under EMI. All errors indicated as a percentage are related to the positive measuring range final value. The data is related to nominal operation (preferred mounting position, $U_s = 24$ V, etc.) using 4-wire operation for RTD inputs. The maximum tolerance values represent the worst case measurement inaccuracy. They contain the theoretically maximum possible tolerances in the corresponding measuring ranges. The maximum tolerances of calibration and test equipment, which are theoretically possible, have also been taken into consideration. This data is valid for at least 24 months.

¹⁾ Specified separately, since the measuring range of ± 200°C is used for many applications.

²⁾ In the more limited measuring range, the relative tolerance is also related to the measuring range final value of +200°C.

i

	Measuring ra	ange	Typical drift	Maximum drift			
			Based or	T _A = 25°C	;		
	-200°C +850°C		5 ppm/K	18	ppm/K		
	-200°C +850°C		20 ppm/K	65	ppm/K		
	-60°C +180°C		5 ppm/K	20	0 ppm/K		
	-60°C +180°C		20 ppm/K	65	ppm/K		
	0 Ω 500 Ω		8 ppm/K	20	ppm/K		
	0 kΩ 5 kΩ		25 ppm/K	80	ppm/K		
nce values for the	ambient temper	rature range T _A = -25°	C to +60°C				
	Measuring ra	inge	Typical tolerance	Maximur	n tolerance		
Asensors	-200°C +200°C		± 0.10°C	± (± 0.37°C		
magnetic	Standard	Level	measuring rar	nge final	Criterion		
s	EN 61000-4-3 IEC61000-4-3	10 V/m	< 0.1%		А		
)	EN 61000-4-4 IEC61000-4-4	1.1 kV	No additional tol	erances	А		
ice	EN 61000-4-6 IEC 61000-4-6	150 kHz 80 MHz, 10 V, 80% AM (1 kHz)	No additional tol	erances	А		
	EN 61000-4-6 IEC 61000-4-6	150 kHz 300 MHz, 30 V , 80% AM (1 kHz)	No additional tol	А			
	ance values for the A sensors magnetic Is Is Ince DDS = 3, see note)	-200°C +850°C -60°C +180°C -60°C +180°C 0 Ω 500 Ω 0 kΩ 5 kΩ ance values for the ambient temper Measuring rational description A sensors -200°C +200°C bmagnetic Standard Is EN 61000-4-3 IC 61000-4-4 IE C61000-4-4 IE C61000-4-4 Ince EN 61000-4-6 Ince EN 61000-4-6	-200°C +850°C -60°C +180°C -60°C +180°C 0 Ω 500 Ω 0 Ω 500 Ω 0 k Ω 5 k Ω ance values for the ambient temperature range $T_A = -25^\circ$ Measuring range A sensors -200°C +200°C omagnetic Standard Level Is EN 61000-4-3 IEC61000-4-3 I) EN 61000-4-4 IEC61000-4-4 1.1 kV Icc 61000-4-6 IEC 61000-4-6 150 kHz 80 MHz, 10 V, 80% AM (1 kHz) Ince EN 61000-4-6 IS 0 kHz 300 MHz, 30 V	-200°C +850°C 20 ppm/K -60°C +180°C 5 ppm/K -60°C +180°C 20 ppm/K -60°C +180°C 20 ppm/K 0 Ω 500 Ω 8 ppm/K 0 k\Omega 5 k\Omega 25 ppm/K ance values for the ambient temperature range T _A = -25°C to +60°C Measuring range A sensors -200°C +200°C ± 0.10°C A sensors -200°C +200°C ± 0.10°C Is EN 61000-4-3 IEC 61000-4-3 10 V/m <0.1%	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Temperature and drift response at $T_A = -25^{\circ}C$ to $+60^{\circ}C$

The above mentioned tolerances can be reduced by providing further shielding measures for the I/O module (e.g., use of a shielded control box/control cabinet). Please refer to the recommended measures in the IL SYS INST UM E Inline system manual.

i

Activation of the "open circuit detection sensitivity" (ODS) function is possible with firmware version 1.10 or later. When activating this function, please observe the "Notes on diagnostic behavior in the event of an error" on page 33.

5 Tested successfully: Use under extreme ambient conditions

The terminal has been tested successfully over 250 temperature change cycles in accordance with IEC 61131-2 in the range from -40° C to $+70^{\circ}$ C.

The following conditions were observed:

- The Inline devices for all connecting cables were connected with a minimum conductor cross section of 0.5 mm²
- The Inline station was installed on a wall-mounted horizontal DIN rail
- Fans were used to ensure continuous movement of air in the control cabinet
- The Inline station was not exposed to vibration or shock
- The Inline station was operated with a maximum of 24.5 V (ensured by using regulated power supply units)

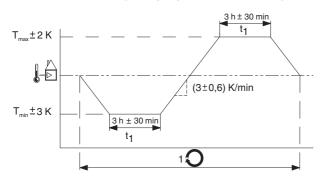
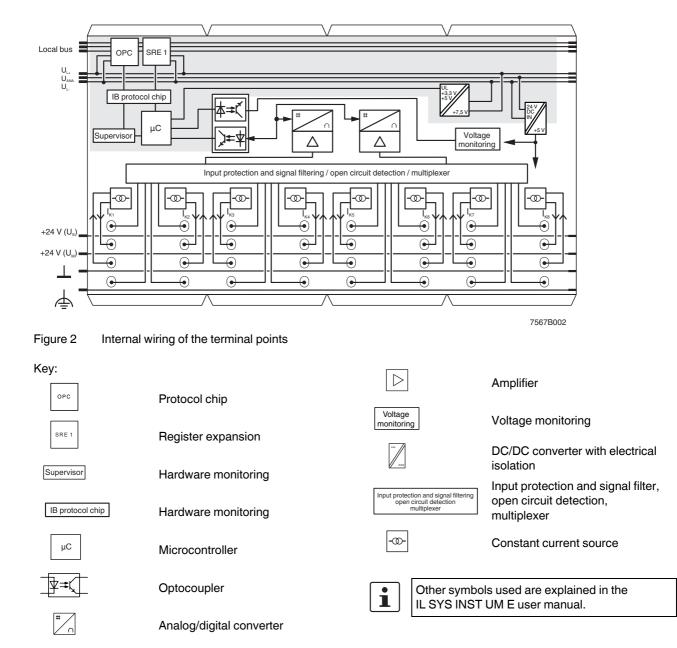
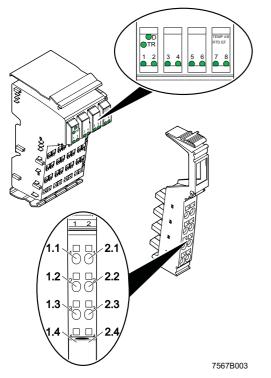


Figure 1 Temperature change cycle

Temperature in the control cabinet/ambient temperature


Cycle

WARNING:


The terminal is not approved for use in potentially explosive areas.

The terminal is not approved for use in safety technology.

6 Internal basic circuit diagram

7 Local diagnostic and status indicators and terminal point assignment

Figure 3 terminal with an appropriate connector

7.1 Local diagnostics and status LEDs

Des.	Color	Meaning
D	Green	Diagnostics
TR	Green	PCP
LED 1 8	Green ON	Measuring channel in operation
	Red ON	Open circuit, over-/underrange
	Orange	Channel Scout
	Flashing at 0.5 Hz	Channel "n" is selected for startup pur- poses with the PCP object (see Section "Channel Scout object (0090 _{hex})" on page 26).

7.2 Function identification

Green

2 Mbps: white stripe in the vicinity of the D LED

7.3 Terminal point assignment with 4-wire connection

Terminal points	Signal	Assignment					
1.1	U ₁ +	RTD sensor 1					
1.2	I ₁₊	- Constant current supply					
1.3	I ₁ -	Constant current supply					
1.4	U ₁ -	RTD sensor 1					
2.1	U ₂ +	RTD sensor 2					
2.2	I ₂ +						
2.3	l ₂ -	Constant current supply					
2.4	U ₂ -	RTD sensor 2					

8 Safety note

WARNING: Electric shock

During configuration, ensure that no isolating voltage for safe isolation is specified between the analog inputs and the bus. During thermistor detection, for example, this means that the user has to provide signals with **safe isolation**, if applicable.

9 Installation instructions

High current flowing through potential jumpers U_M and U_S leads to a temperature rise in the potential jumpers and inside the terminal. To keep the current flowing through the potential jumpers of the analog terminals as low as possible, always place the analog terminals after all the other terminals at the end of the main circuit (for the sequence of the Inline terminals: see also IL SYS INST UM E user manual).

10 Electrical isolation

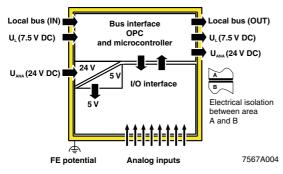


Figure 4 Electrical isolation of the individual function areas

11 Connection notes

Always connect temperature shunts using shielded, twisted-pair cables.

The connection examples show how to connect the shield (Figure 5).

Insulate the shield at the sensor.

Short-circuit unused channels (see Figure 5 on page 12, channel 4).

12 Connection examples

Connect the braided shield of the sensor cable **at one end** only.

For the assignments illustrated below, it is absolutely necessary to connect the cable shield at a central point in the control cabinet. The braided shield can be connected to a shield busbar using, for example, a shield connection clamp of SK8 type, Order No. 3025163.

12.1 4-wire connection

i

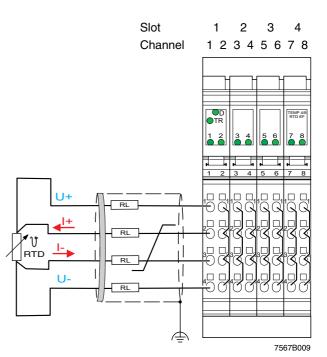


Figure 5 4-wire connection example

Example assignment:

Chan- nel	Connection method	Remark
1	4-wire connection	
28	Not used	Insert the short-circuit jumper.

12.2 3-wire connection

Manufacturer recommendation

To improve the measured results of a 3-wire sensor on long sensor cables, Phoenix Contact recommends always combining 4-wire connection with the 3-wire sensor (see Figure 7 on page 13).

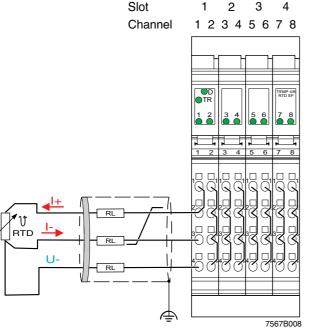
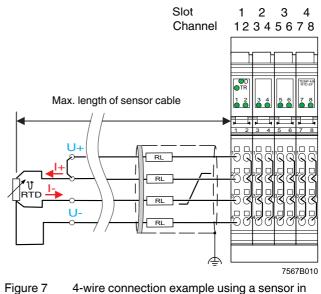



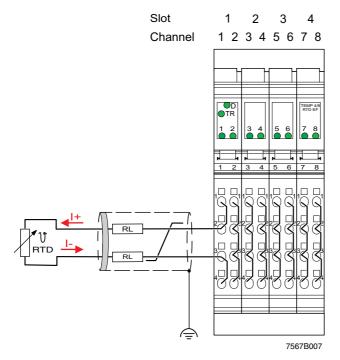
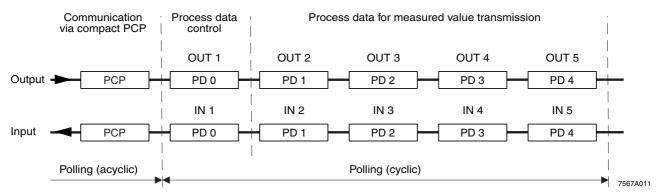
Figure 6 3-wire connection example

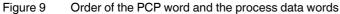
12.3 4-wire connection using a sensor in 3-wire technology

According to the assignment example illustrated below, RTD 3-wire sensors can also be used for long sensor cables with optimum accuracy using 4-wire connection of the terminal. This compensates for possible cable interferences, which may occur in conjunction with very long sensor cable lengths due to, for example, cable resistances, capacitances, and inductances. In addition, the temperature drift of the connection cable is eliminated.

4-wire connection exam
3-wire technology

12.4 2-wire connection


Figure 8 2-wire connection example

13 Process data

The module has five process data words. The first word is the control word, which is used to execute all actions. As confirmation for an action, the first input word contains a partial copy of the control word. The error bit indicates whether a command was carried out without errors. For the command codes 4x, 5x, and 60, a set error bit indicates an invalid configuration. For the commands used to read the measured values (command codes 00 ... 09), the error bit represents a group error message. If the error bit is set, there will be an error message on one or more channels.

The terminal has five process data words and one PCP word.

14 OUT process data words

Five process data output words are available.

Configure the terminal channels via the OUT process data words OUT1 and OUT2. In this context, the output word OUT1 contains the command and the output word OUT2 contains the parameters belonging to this command.

Configuration errors are indicated in the status word. The configuration settings are stored in a volatile memory.

If you change the configuration, the message "Measured value invalid" appears (diagnostics code 8004_{hex}), until new measured values are available.

Please note that extended diagnostics is only possible if the IB IL format is configured as the format for representing the measured values. As this format is preset on the terminal, it is available as soon as the voltage is applied.

14.1 Output word OUT1 (control word)

		OUT1														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	Command code							0	0	0	DS	0	0	0	0	

Bit 15 to bit 8 (command code):

	Bit							OUT1	Command function
15	14	13	12	11	10	9	8		
0	0	0	0	0	С	С	С	0x00hex	Read measured value in IN2 channel-by-channel.
0	0	0	0	1	0	0	0	0800 _{hex}	Read measured values of channel 1 to 4 into IN2 to IN5.
0	0	0	0	1	0	0	1	0900 _{hex}	Read measured values of channel 5 to 8 into IN2 to IN5.
0	0	0	1	0	С	С	С	1x00 _{hex}	Read configuration in IN2 channel-by-channel.
0	0	1	1	1	1	0	0	3C00 _{hex}	Read device data The firmware version and the device ID number are represented in IN2 (see Section 15.2 "Input words IN2 to IN5").
0	1	0	0	0	С	С	С	4x00 _{hex}	Configure channel, configuration in OUT2
0	1	0	1	0	С	С	С	5x00 _{hex}	Configure channel and read measured value of the channel, configuration in OUT2, measured value in IN2.
0	1	1	0	0	0	0	0	6000 _{hex}	Configure entire terminal (all channels); configuration in OUT2

CCC = channel number

Channel assignment:

Bit			Channel number
10	9	8	
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

Bits 5 and 4 (ODS: open circuit detection sensitivity; firmware version 1.10 or later)

В	it	ODS: open circuit detec-					
5	4	tion sensitivity					
0	0	High sensitivity					
0	1	Medium sensitivity					
1	0	Reserved					
1	1	Switched off					

Please also observe the "Notes on diagnostic behavior in the event of an error" on page 33.

14.2 Output word OUT2 (parameter word)

The parameters for the commands $4x00_{hex}$, $5x00_{hex}$, and 6000_{hex} must be specified in OUT2. This parameter word is only evaluated for these commands.

		OUT2														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0	Filter	time	0		F	₹ ₀		Reso	lution	For	mat		Senso	or type	
Residential Comparison of the sensor resistance at 0°C. Here, for example, you can select whether Pt100, Pt500, or Pt1000 are to be used for the platinum sensor type. Resolution Quantization of the measured value, choice between °Celsius or °Fahrenheit Format Represents the measured value in the IN process data Sensor Sets the selected sensor type																
If invalid parameters are specified in the parameter word, the command will not be executed. The command is con-																

firmed in the input words with the set error bit.

14.3 Parameters for configuration

The module can be configured either via process data or PCP. The error code "Measured value invalid" is output during configuration. If the configuration is invalid, the error bit is set in the status word. The configuration is only stored in a volatile memory. The first output word must contain the command, the second output word must contain the configuration value.

								OL	JT2			_				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0	Filter	time	0		R	l ₀		Reso	lution	For	mat		Senso	or type	

Default settings are marked in **bold**.

Bits 14 and 13:

1

Code	Filter time
00	480 ms
01	120 ms
10	101 ms
11	200 ms

Bits 11 to 8:

Co	de	R₀ [Ω]
Dec	Bin	
0	0000	100
1	0001	10
2	0010	20
3	0011	30
4	0100	50
5	0101	120
6	0110	150
7	0111	200

Co	de	R₀ [Ω]		
Dec	Bin			
8	1000	240		
9	1001	300		
10	1010	400		
11	1011	500		
12	1100	1000		
13	1101	1500		
14	1110	2000		
15	1111	10000		

Bits 7 and 6:

Co	de	Resolution f	for sensor type						
Dec	Bin	All temper- Linear Linear			Linear R				
		ature sen-	R 0	R 0	0				
		sors	500 Ω	5 k Ω	30 k Ω				
0	00	0.1°C	0.1 Ω	1Ω	1Ω				
1	01	0.01°C	0.01 Ω	0.1 Ω	Res.				
2	10	0.1°F	Reserved						
3	11	0.01°F	neserveu						

Bits 5 and 4:

Code		Format					
Dec	Bin						
0	00	IB IL format (15 bits + sign bit with					
		extended diagnostics)					
1	01	Reserved					
2	10	S7-compatible format (15 bits + sign bit)					
3	11	Reserved					

Bits 3 to 0:

Co	de	Sensor type
Dec	Bin	
0	0000	Pt DIN
1	0001	Pt SAMA
2	0010	Ni DIN
3	0011	Ni SAMA
4	0100	Cu10
5	0101	Cu50
6	0110	Cu53
7	0111	Ni1000 (Landis & Gyr)
8	1000	Ni500 (Viessmann)
9	1001	KTY 81-110
10	1010	KTY 84
11	1011	KTY 81-210
12	1100	Linear R 0 30 k Ω
13	1101	Reserved
14	1110	Linear R 0 500 Ω
15	1111	Linear R 0 5 k Ω

15 IN process data words

15.1 Input word IN1 (status word)

The input word IN1 serves as status word.

Ass	ignm	ent
,	··	0.110

						IN1														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
ent	EB		Mi	rrored	comm	and co	de		0	0	0	0	0	0	0	0				

EB: Error bit

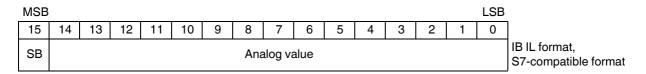
EB = 0 No error has occurred.

EB = 1 An error has occurred.

Mirroring of the command code:

A command code mirrored from the control word. Here, the MSB is suppressed.

15.2 Input words IN2 to IN5


The measured values, the configuration or the firmware version are transmitted to the controller board or the PC using the process data input words IN2 to IN5 in accordance with the configuration.

For the control word **3C00_{hex}**, IN2 supplies the firmware version and the module ID.

Example: firmware version 1.23:

		IN2														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment (hex)	1					2	2		3					Er	nex	
Meaning	Firmware version 1.23												Modu	ule ID		

Basically two formats are available for the representation of the measured values. For more detailed information about the formats, please refer to "Formats for representing measured values" on page 20.

MSB Most significant bit

LSB Least significant bit

SB Sign bit

AV Analog value

16 Formats for representing measured values

16.1 IB IL format (default setting)

The measured value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit. This format supports extended diagnostics. Values > 8000_{hex} and < 8100_{hex} indicate an error.

Measured value representation in IB IL format, 15 bits

MSB															LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB							Ana	alog va	alue						

SB Sign bit

IB input wo	rd	All temperature s	ensors [°C/°F]	R ₀ up	to 500 Ω	R ₀ up	to 5 k Ω
Code (hex)	Dec	Resolution	Resolution	Reso	olution	Reso	lution
		0.1°C/°F	0.01°C/°F	0.1 Ω	0.01 Ω	1 Ω	0.1 Ω
8001	Overrange	> Limit value	> Limit value	>525	>325.12	>5250	>3251.2
0FA0	1000	+100.0	+10.0	100.0	10.0	1000.0	100.0
0001	1	+0.1	+0.01	+0.1	+0.01	+1.0	+0.1
0000	0	0	0	≤0	≤0	≤0	≤ 0
FFFF	-1	-0.1	-0.01	-		-	-
FC18	-1000	-100.0	-10.0	-		-	-
8080	Underrange	< Limit value	< Limit value	-		-	-

The following diagnostics codes are supported:

Code (hex)	Error
8001	Overrange
8002	Open circuit
8004	Measured value invalid/no valid measured value available (e.g., because channel was not configured)
8010	Invalid configuration
8020	I/O supply voltage fault
8040	Terminal faulty
8080	Underrange

If the measured value is outside the representation area of the process data, the "Overrange" or "Underrange" error message is displayed.

16.2 S7-compatible format

The measured value for temperature and resistance values is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

Measured value representation in S7 format, 15 bits

MSB															LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB							Ana	alog va	alue						

SB Sign bit

IB input wo	rd	All temperature s	ensors [°C/°F]	0 to	500 Ω	0 to	5 k Ω
Code (hex)	Dec	Resolution	Resolution	Reso	olution	Reso	lution
		0.1°C/°F	0.01°C/°F	0.1 Ω	0.01 Ω	1 Ω	0.1 Ω
7FFF	Overrange	> Limit value	> Limit value	>525	>325.12	>5250	>3251.2
0FA0	1000	+100.0	+10.0	100.0	10.0	1000.0	100.0
0001	1	+0.1	+0.01	+0.1	+0.01	+1.0	+0.1
0000	0	0	0	≤0	≤0	≤0	≤0
FFFF	-1	-0.1	-0.01	-		-	-
FC18	-1000	-100.0	-10.0	-		-	-
8000	Underrange	< Limit value	< Limit value	-		-	-

The following diagnostics codes are possible:

Code (hex)	Error
7FFF	Overrange
8002	Open circuit
8004	Measured value invalid/no valid measured value available (e.g., because channel was not configured)
8010	Invalid configuration
8020	I/O supply voltage fault
8040	Terminal defective
8000	Underrange

i

If the measured value is outside the representation area of the process data, the "Overrange" or "Underrange" error message is displayed.

17 PCP communication

1

For information on PCP communication, please refer to the IBS SYS PCP G4 UM E (Order No. 2745169) and IBS PCP COMPACT UM E (Order No. 9015349) user manuals.

When the terminal is delivered, it is configured according to the default settings. To adapt the configuration, the terminal can be configured via process data or PCP.

In PCP mode, the terminal is configured with the "Config Table" object.

The IBS CMD (for standard controller boards) and PC WORX (for Field Controllers (FC) and Remote Field Controllers (RFC)) programs are available for the configuration and parameterization of your INTERBUS system. For additional information, please refer to the IBS CMD SWT G4 UM E user manual and the documentation for the version of PC WORX used.

17.1 Object dictionary

Index	Object name	Meaning	Data type	Ν	L	Rights
0018 _{hex}	DiagState	Diagnostics status	Record		6	rd
0080 _{hex}	Config table	Configuration table	Array of Unsigned 16	12	2	rd/wr
0081 _{hex}	Analog Values	Measured value in 16-bit format	Array of Unsigned 16	8	2	rd
0082 _{hex}	Measured Value Float	Measured value in extended float format	Record	8	6	rd
0090 _{hex}	Channel Scout	Channel Scout	Unsigned 8	1	1	rd/wr

N: Number of elements

- rd: Read access permitted
- Length of an element in bytes
- wr: Write access permitted

18 Object descriptions

18.1 DiagState object (0018_{hex})

Object description:

L:

The object is used for structured error reporting and is defined in the basic profile.

Subindex	Data type	Meaning	Content
1	Unsigned 16	Error Number	0 65535
2	Unsigned 8	Priority	ErrorCode = 0000 _{hex} -> Prio: 00 _{hex} , otherwise 02 _{hex}
3	Unsigned 8	Channel	$ErrorCode = 0000_{hex} \rightarrow Channel: 00_{hex}$, otherwise 01_{hex} 08_{hex}
4	Unsigned 16	Error Code	0000 _{hex} : OK, 8910 _{hex} : Overrange, 8920 _{hex} : Underrange, 7710 _{hex} : Open circuit, 5160 _{hex} : Power failure, 5010 _{hex} : Hardware fault
5	Unsigned 8	More follows	00
6	OctetString	Text (10 characters)	ErrorCode=0000-> Text: 'Status OK', otherwise error-specific

18.2 Config Table object (0080_{hex})

Configure the terminal using this object.

Object description:

Object description.			
Object	Config table		
Access	Read, Write		
Data type	Array of Uns	igned 16	12 x 2 bytes
Index	0080 _{hex}		
Subindex	00 _{hex} 01 _{hex} 02 _{hex} 03 _{hex} 04 _{hex} 05 _{hex} 06 _{hex} 07 _{hex} 08 _{hex} 09 _{hex} 08 _{hex} 08 _{hex} 08 _{hex} 08 _{hex} 08 _{hex}	Write all elements Configuration of channel 1 Configuration of channel 2 Configuration of channel 3 Configuration of channel 4 Configuration of channel 5 Configuration of channel 6 Configuration of channel 7 Configuration of channel 8 Reserved ODS (open circuit detection sensitivity) Reserved Reserved	
Length (bytes)	18 _{hex} 02 _{hex}	Subindex 00 _{hex} Subindex 01 _{hex} to 0C _{hex}	
Data	Terminal cor	figuration	•

Value range:

ODS (firmware 1.10 or later)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0	0	0	0	0	0	0	0	0	0	O	DS	0	0	0	0

Bits 5 and 4 (ODS: open circuit detection sensitivity)

Bit		ODS: open circuit detec-		
5	4	tion sensitivity		
0	0	High sensitivity		
0	1	Medium sensitivity		
1	0	Reserved		
1	1	Switched off		

18.3 Analog Values object (0081_{hex})

The elements of this object contain the analog values of the channels in a format that has been selected for this channel.

Object description:						
Object	Analog Values					
Access	Read	Read				
Data type	Array of Uns	Array of Unsigned 16 8 x 2 bytes				
Index	0081 _{hex}	0081 _{hex}				
Subindex	00 _{hex} 01 _{hex} 02 _{hex} 03 _{hex} 04 _{hex} 05 _{hex} 06 _{hex} 07 _{hex} 08 _{hex}	Read all elements Analog value of channel 1 Analog value of channel 2 Analog value of channel 3 Analog value of channel 4 Analog value of channel 5 Analog value of channel 6 Analog value of channel 7 Analog value of channel 8				
Length (bytes)	10 _{hex} 02 _{hex}	Subindex 00 _{hex} Subindex 01 _{hex} to 08 _{hex}				
Data	Analog values of the channels					

18.4 Measured Value Float object (0082_{hex})

1

This format provides the highest internal module accuracy and is independent of the configured resolution.

Object description:

Object	Measured Value Float				
Access	Read	Read			
Data type	Array of Rec	8 x 6 bytes			
Index	0082 _{hex}				
Subindex	01_hexAnalog value of channel 102_hexAnalog value of channel 203_hexAnalog value of channel 304_hexAnalog value of channel 405_hexAnalog value of channel 506_hexAnalog value of channel 607_hexAnalog value of channel 708_hexAnalog value of channel 8				
Length (bytes)	30_hexSubindex 00_hex06_hexSubindex 01_hex to 08_hex				
Data	Analog values of the channels				

The extended float format is a specific format from Phoenix Contact and consists of the measured value, the status and the unit code. The status is required as there are no patterns informing about the status of the value defined in the float format. The status corresponds to the lower bytes of the Inline error code.

For example, if status = 01 with overrange, the Inline error code is 8001_{hex}. The measured value is valid if status=0.

Measured value record:

Element	Data type	Length in bytes	Meaning
.1	Float	4	Measured value in float format according to IEEE 754
.2	Unsigned 8	1	Status
.3	Unsigned 8	1	Unit code: 32: °C, 33: °F, 37: Ω

Structure of the float format according to IEEE 754

Bit		25		17		9		1
Assignment	VEEE	EEEE	EMMM	MMMM	MMMM	MMMM	MMMM	MMMM

S = 1 sign bit, 0: positive, 1: negative

E = 8 bits, exponent with offset 7Fh_{hex}

M = 23 bits, mantissa

Example values for the float format

1.0	3F 80 00 00 _{hex}
-1.0	BF 80 00 00 _{hex}
10	41 20 00 00 _{hex}
1.03965528	3F 85 13 6D _{hex}