
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt

of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the

purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)

number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose

the following along with the returned merchandise: your name, telephone number, shipping address, and a description

of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the

product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a

full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This

guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on

returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2005 by Parallax Inc. By downloading or obtaining a printed copy of this

documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not

permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or

intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by

Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:

Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's

permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for

commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax

products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is

often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Boe-Bot SumoBot, SX-Key and Toddler are registered trademarks of Parallax, Inc.

If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must state

that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the trademark

name in each printed document or web page. HomeWork Board, Parallax, and the Parallax logo are trademarks of

Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state

that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each printed

document or web page. Other brand and product names are trademarks or registered trademarks of their respective

holders.

ISBN 1-928982-35-2

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of

warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of

equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with

Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,

resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter

how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible

from www.parallax.com.

• Propeller Chip – This list is specifically for our customers using Propeller chips and products.

• BASIC Stamp – This list is widely utilized by engineers, hobbyists and students who share their

BASIC Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in

Class curriculum in their courses. The list provides an opportunity for both students and educators to

ask questions and get answers.

• Parallax Educators – A private forum exclusively for educators and those who contribute to the

development of Stamps in Class. Parallax created this group to obtain feedback on our curricula and

to provide a place for educators to develop and obtain Teacher’s Guides.

• Robotics – Designed for Parallax robots, this forum is intended to be an open dialogue for robotics

enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®,

Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with

Parallax assembly language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module

that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us

know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials

and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and

corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product

page’s free downloads for an errata file.

ACKNOWLEGEMENTS

Many thanks to fellow Parallaxians Jen Jacobs for cover and title page art and Chris Savage for technical review of

this edition.

Table of Contents · Page i

Table of Contents

Preface... iii
Author’s Note ... iii
Getting the Most from StampWorks..v
Steps to Success ..v

Preparing the StampWorks Lab ... 1
StampWorks Kit Contents...1
Setting Up the Hardware and Software ..2
Notes on Using Integrated Circuits in StampWorks Experiments...................................9

Programming Essentials... 11
Contents of a Working Program ...11
Branching – Redirecting Program Flow ..12
Looping – Running Code Again and Again...14
Subroutines – Reusable Code that Saves Program Space..16

The Elements of PBASIC Style.. 19

Time to Experiment .. 25
Learn the Programming Concepts..25
Building the Projects ...25
What to do Between Projects ...25
Experiment #1: Flash an LED...26
Experiment #2: Flash an LED (Advanced) ...29
Experiment #3: Display a Counter with LEDs...33
Experiment #4: Science Fiction LED Display ...36
Experiment #5: LED Graph (Dot or Bar) ...40
Experiment #6: A Simple Game ...46
Experiment #7: A Lighting Controller ..51

Building Circuits on Your Own.. 57

Using 7-Segment LED Displays .. 59
Experiment #8: A Single-Digit Counter ...60
Experiment #9: A Digital Die...63
Experiment #10: A Digital Clock ...67

Using Character LCDs ... 73
Experiment #11: Basic LCD Demonstration ...75
Experiment #12: Creating Custom LCD Characters...82
Experiment #13: Reading the LCD RAM ..88

Page ii ·StampWorks

Moving Forward ... 93
Experiment #14: Scanning and Debouncing Multiple Inputs ..94
Experiment #15: Counting Events ..98
Experiment #16: Frequency Measurement ..101
Experiment #17: Advanced Frequency Measurement ...106
Experiment #18: A Light Controlled Theremin..109
Experiment #19: Sound Effects (SFX)..112
Experiment #20: Infrared Object Detection ..119
Experiment #21: Analog Input with PULSIN...123
Experiment #22: Analog Output with PWM ..126
Experiment #23: Expanded Digital Outputs with Shift Registers................................130
Experiment #24: Expanded Digital Inputs with Shift Registers...................................137
Experiment #25: Mixed IO with Shift Registers ..143
Experiment #26: Hobby Servo Control ...146
Experiment #27: Stepper Motor Control ...150
Experiment #28: Voltage Measurement ...156
Experiment #29: Temperature Measurement ...161
Experiment #30: High Resolution Temperature Measurement168
Experiment #31: Advanced 7-Segment Multiplexing..173
Experiment #32: I2C Communications ...179
Experiment #33: Using a Real-Time Clock...188
Experiment #34: Serial Communications with a PC ...197
Experiment #35: (BONUS) BS2px ADC ...206

Power PBASIC .. 211

Striking Out on Your Own .. 219

Preface · Page iii

Preface

AUTHOR’S NOTE

Dear friends,

I t seems like ages ago that Ken Gracey handed me a new prototyping and

development board and asked, “What do you think we could do with this?” That

board, of course, was the original NX-1000 and what we went on to create together

was the first edition of the book you’re now reading: StampWorks.

A lot of things have changed since then, and yet many things remain comfortably

constant: there are still many ways to learn microcontroller programming and one of

the best – in our opinion – is to do so using the BASIC Stamp® microcontroller. Our

philosophy has always been rooted in the belief that learning by doing provides the

fastest, deepest, most satisfying results. We teach theory by putting it into practice.

That’s what StampWorks is all about.

Most of you that find your way to StampWorks will have had some applicable

experience; perhaps you’ve worked your way through our excellent Stamps in Class

student guides and are looking to build on that experience. Perhaps you have an

electronics and/or programming background and are looking to apply those skills

with the BASIC Stamp microcontroller. Either way, this book will teach you to apply

the skills that you have and develop new ones along the way so that you can

confidently translate your ideas into working projects. Microcontrollers are a part of

our daily lives – whether we see them or not – so learning to design with and

program them is a very valuable skill.

Like earlier editions, this book assumes that you’re ready to work – ready to read

component documentation, willing to open the BASIC Stamp IDE help file for details

on a PBASIC command, that you’re unafraid to do a web search if necessary to

obtain data that will be required for a challenge; in short, whatever it takes to

succeed. We’ll push a bit harder this time, but we’ll do it together. My goal is that

even if this isn’t your first exposure to StampWorks, it will be a worthwhile and

pleasurable experience.

Page iv ·StampWorks

Among the changes that affect this edition of StampWorks is an updated PBASIC

language: PBASIC 2.5. For those that come from a PC programming background,

PBASIC 2.5 will make the transition to embedded programming a bit easier to deal

with. And what I ’m especially excited about is a new development platform: the

Parallax Professional Development Board. My colleague, John Barrowman, with

feedback from customers and Parallax staff alike, put about all of the features we

would ever want into one beautiful product. For those of you have an NX-1000 (any

of the variants), don’t worry; most of the experiments will run on it without major

modification.

Finally, as far as the text goes, many of the project updates are a direct result of

those that have come before you, and you, my friend, have the opportunity to affect

future updates. Please, if you ever have a question, comment, or suggestion, feel

free to e-mail them to Editor@parallax.com.

Preface · Page v

GETTING THE MOST FROM STAMPWORKS

Before you get started, you’ll want to have a copy of the BASIC Stamp Syntax and

Reference Manual (version 2.1 or higher) handy – either printed or in PDF (available

as a free download from www.parallax.com). Through the course of this book I will

ask you to review specific sections of the BASIC Stamp Manual in preparation for an

experiment. At other times I may ask you to go to the Internet to download a

datasheet; by doing this we can focus on the details of the experiment and not have

to print a lot of redundant information.

STEPS TO SUCCESS

Read (or review if you have previous BASIC Stamp programming experience)

sections 1 – 4 of the BASIC Stamp Syntax and Reference Manual. This will introduce

you to the BASIC Stamp microcontroller, its programming IDE, and its memory

organization. And if you’ve never worked with microcontrollers or programming of

any kind, I strongly suggest that you download and work your way through our

What’s A Microcontroller? student guide. This outstanding resource is used in

schools all over the world and is considered the best introduction to microcontroller

principals and programming available anywhere.

The focus of StampWorks is on embedded programming and circuit integration.

That said, this is not a text on electronics principles. I f you are new to the world of

electronics, a great beginning text is Getting Started in Electronics by renowned

electronics author, Forrest M. Mims. You can find this at your favorite bookseller.

Read “Preparing the StampWorks Lab” in the next section. This will introduce you to

the Parallax Professional Development Board (PDB) and get it ready for the

experiments that follow.

Finally, work your way through the experiments, referring to the BASIC Stamp

Syntax and Reference Manual (or online Help file) as needed. This is the fun part –

and the part that is the most work. Don’t allow yourself to be satisfied with simply

loading and running the code – dig in and work with it, modify it, make it your own.

By the time you’ve completed the experiments in this book I believe you will be

ready and will have the confidence to take on your own BASIC Stamp microcontroller

projects; from projects that may be very simple to those that are moderately

complex. The real key is to make sure you truly understand an experiment before

Page vi ·StampWorks

moving on to another. Oftentimes we will rely on what we’ve previously worked

through as support for a new experiment. Taken one at a time, the experiments are

not difficult and if you work through them methodically, you’ll find your confidence

and abilit ies increasing at a very rapid pace.

 Preparing the StampWorks Lab · Page 1

Preparing the StampWorks Lab
STAMPWORKS KIT CONTENTS

Before getting to the experiments, let’s start by taking inventory of the kit and then

preparing the PDB for use in the experiments that follow. Once this is done, you’ll be

able to move through the experiments smoothly, and when you’ve completed

StampWorks you’ll be ready for just about any project you can imagine.

StampWorks Lab Kit Contents #27297
(parts and quantities subject to change without notice)

Stock Code # Description Marking Qty
27218 BASIC Stamp Syntax and Reference Manual 1

27220 StampWorks Manual v2.1 1

23138 Professional Development Board 1

BS2-IC BASIC Stamp 2 module 1

750-00007 Power supply, 12 vdc, 1 amp 1

800-00003 Serial cable 1

805-00006 USB cable, Mini-A to Mini-B 1

700-00050 22-gauge wire, solid, red 1

700-00051 22-gauge wire, solid, white 1

700-00052 22-gauge wire, solid, black 1

200-01030 0.01 µF capacitor 103 2

200-01040 0.1 µF capacitor 104 2

150-02210 220 ohm resistor Red-Red-Brn 3

150-04710 470 ohm resistor Yel-Vio-Brn 3

150-01020 1 k-ohm resistor Brn-Blk-Red 3

150-04720 4.7 k-ohm resistor Yel-Vio-Red 3

150-01030 10 k-ohm resistor Brn-Blk-Org 3

350-00009 CdS photoresistor 2

350-00003 IR LED 1

350-90000 LED stand-off (for IR LED) 1

350-90001 LED shield (for IR LED) 1

350-00014 IR receiver 1

603-00006 Parallel LCD module 1

604-00009 LM555 timer 1

602-00015 LM358 dual op-amp 1

602-00009 74HC595, serial-in-parallel-out shift register 2

602-00010 74HC165, parallel-in-serial-out shift register 2

ADC0831 ADC0831, 8-bit A/D converter 1

604-00002 DS1620, digital thermometer 1

603-00014 MC14489 LED multiplexer 1

604-00020 24LC32 EEPROM 1

900-00005 Servo, Parallax Standard 1

27964 Stepper motor, 12 vdc, unipolar 1

Page 2 · StampWorks

SETTING UP THE HARDWARE AND SOFTWARE

To set up the StampWorks lab for experiments, you’ll need the following items:

• Professional Development Board

• BASIC Stamp 2 module

• 12-volt wall pack (2.1 mm, center-positive plug)

• Programming cable (serial or USB)

• Red and black hook-up wire (22-gauge, solid)

• Wire cutters/strippers (not included in the StampWorks Kit)

Installing the BASIC Stamp Module

Start by removing the BASIC Stamp 2 module from its protective foam and carefully

inserting it into the 40-pin DIP socket on the PDB (upper-left, near the DB-9

programming connector). You’ll notice that the BASIC Stamp 2 module and the PDB

socket are marked with semi-circle alignment guides. The BASIC Stamp 2 module

should be inserted into the socket so that the alignment guides match. Ensure that

the BASIC Stamp 2 module is fully left-aligned in the socket as shown in the

illustration below.

Make the Programming Connection

Use a programming cable (either serial or USB, but not both at the same time) to

connect the PDB to your PC. I t is best to select a serial (COM) port that is not already

in use. I f, however, you’re forced to unplug another device, for example, a PDA or

electronic organizer from your computer, make sure that you also disable its

communication software before attempting to program your BASIC Stamp

microcontroller.

 Preparing the StampWorks Lab · Page 3

Computer System Requirements

You will need either a desktop or laptop PC to run the BASIC Stamp Editor software.

For the best experience with the StampWorks experiments, check that you computer

system meets the following requirements:

• Microsoft Windows® 2000/XP or newer operating system

• An available serial or USB port (with VCP driver installed)

• World Wide Web access

Installing the BASIC Stamp Editor

Download the latest version of the BASIC Stamp Editor for Windows (version 2.1 or

later) from www.parallax.com. Run the program installer, following the on-screen

prompts.

Download the StampWorks Program Files

The sample programs listed in this book, with the exception of Experiment 35, were

written for the BASIC Stamp 2. These programs and some additional bonus programs

are available for free download from www.parallax.com. Many of them contain

additional code to support conditional compliation with different BASIC Stamp

models.

Note: For USB programming, make sure that you have the latest FDTI VCP (Virtual Com
Port) driver. Step-by-step installation instructions of the VCP driver may be obtained via
the StampWorks Product Page http at www.parallax.com.

Note: While third-party developers have made BASIC Stamp editors available for
operating systems other than Windows, these editors are not supported by Parallax. This
text assumes that you’re running the official Parallax BASIC Stamp Editor on a Windows
computer. If you’re using another operating system and editor, you may need to make
adjustments in editor-specific instructions.

Page 4 · StampWorks

Preparing the Breadboard

In the center of the PDB is a solderless breadboard where we will build circuits that

are not integral to the PDB lab board itself (a variety of components are included in

the StampWorks kit). I t ’s important to understand how this breadboard works. With

a litt le bit of preparation, it will be even easier to use with the experiments that

follow.

The innermost portion of the breadboard is where we will connect the components.

This section of the breadboard consists of several columns of sockets (there are

numbers printed along the top for reference). For each column there are two sets of

rows. The rows are labeled A through E and F through J, respectively. For any

column, sockets A through E are electrically connected. The same holds true for

rows F through J.

Above and below the main section of breadboard are two horizontal rows of sockets,

each divided in the center. These horizontal rows (often called “rails” or “buses”) will

be used to carry + 5 volts (Vdd) and Ground (Vss). The preparation of the

breadboard involves connecting the rails so that they run from end-to-end,

connecting the top and bottom rails together and, finally, connecting the rails to the

Vdd and Vss connections of the PDB power supply. Here’s what the breadboard

looks like on the outside:

 Preparing the StampWorks Lab · Page 5

I f the breadboard was X-Rayed, we would see the internal connections and the

breaks in the Vdd and Vss rails that need to be connected. Here’s a view of the

breadboard’s internal connections:

Start by setting your wire stripper for 22 gauge (0.34 mm2). Take the spool of black

wire and strip a ¼ -inch (6 mm) length of insulation from the end of the wire. With

your needle-nose pliers, carefully bend the bare wire 90 degrees so that it looks like

this:

Now push the bare wire into the topmost (ground) rail, into the socket that is just

above breadboard column 29 (this socket is just left of the middle of the breadboard,

near the top). Hold the wire so that it extends to the right. Mark the insulation by

lightly pinching it with the wire cutters at the socket above column 32. Be careful

not to cut the wire.

Remove the wire from the breadboard and cut it about ¼ -inch (6 mm) beyond the

mark you just made. With your wire strippers, remove the insulation at the mark.

Now bend the second bare end 90 degrees so that the wire forms a squared “U”

shape with the insulation in the middle.

Page 6 · StampWorks

I f you’ve measured and cut carefully, this “U” shaped wire will plug comfortably into

the ground rail at sockets 29 and 32. This will create a single ground rail. Repeat

this process with black wire for the bottom-most rail. Then, connect the two rails

together using the same process at column 60 (right-most sockets on each rail).

With the red wire, connect the top and bottom inside rail halves together. These rails

will carry + 5 volts, or Vdd. Connect the Vdd rails together at column 59.

Now take a 1½ -inch (4 cm) section of black wire and a 1½ -inch (4 cm) section of

red wire and strip ¼ -inch (6 mm) insulation from the ends of both. Bend each wire

into a rounded “U” shape. These wires are not designed to lie flat like the other

connections, making them easy to remove from the StampWorks lab board if

necessary.

Carefully plug one end of the red wire into any of the terminal sockets of the VDD

block (near pin 1 of the BASIC Stamp socket) and the other end into the Vdd (+ 5)

rail at column 5. Then, plug one end of the black wire into any of the sockets of the

VSS block and other end into the ground rail at column 1. Be very careful with these

last two connections. I f the Vdd and Vss rails get connected together damage may

occur when power is applied to the PDB. When completed, the PDB breadboard will

look like this:

 Preparing the StampWorks Lab · Page 7

Final Checkout

With the BASIC Stamp module installed and the breadboard prepared it is time for a

final checkout before proceeding to the experiments. I f you haven’t done so already,

connect a programming cable (serial or USB) between your PC and the PDB.

Connect a 12-volt DC power supply to the PDB power connector. Move the PDB

power switch to ON; a blue LED next to the power switch should illuminate. I f it

doesn’t, move the power switch to OFF and recheck all connections, as well as the

power supply.

Start the BASIC Stamp Editor and enter the following short program:

' {$STAMP BS2}

Main:
 DEBUG "Ready for StampWorks 2.1!"
 END

Page 8 · StampWorks

Now run the program. I f all went well the program will be downloaded to the BASIC

Stamp module and a Debug Terminal window will appear.

I f an error occurs, check the following items:

• I s the BASIC Stamp module plugged into the PDB correctly?

• I s the PDB power switch set to ON? Is the blue ON LED lit?

• I s the programming cable connected between the PC and the PDB?

• Have you (manually) selected the wrong PC com port?

• I s the PC com port being used by another program?

• I f using USB, have you installed the FTDI VCP driver?

When the Debug Terminal window appears and tells you that the StampWorks lab is

ready, it ’s time to talk about BASIC Stamp programming.

 Preparing the StampWorks Lab · Page 9

NOTES ON USING INTEGRATED CIRCUITS IN STAMPWORKS
EXPERIMENTS

There are two ways to draw integrated circuits (ICs) in a schematic: One way is

considered “chip-centric” in which I /O pins appear in the schematic according to their

physical location on the device. StampWorks uses schematics drawn for efficiency,

meaning that I /O pins are placed to make the schematic legible. I /O pins on all

chips are counted according to their indicator, starting with Pin 1 and counting in a

counter-clockwise direction as shown below:

Page 10 · StampWorks

Programming Essentials · Page 11

Programming Essentials

CONTENTS OF A WORKING PROGRAM

In Sections 1 - 4 of the BASIC Stamp Syntax and Reference Manual you were

introduced to the BASIC Stamp, its architecture, and the concepts of variables and

constants. In this section, we’ll introduce the various elements of a program: linear

code, branching, loops, and subroutines.

The examples in this discussion use pseudo-code to demonstrate and describe

program structure. I talics are used to indicate the sections of pseudo-code that

require replacement with valid programming statements in order to allow the

example to compile and run correctly. You need not enter any of the examples here

as all of these concepts will be used in the experiments that follow.

People often think of computers and microcontrollers as “smart” devices and yet,

they will do nothing without a specific set of instructions. This set of instructions is

called a program, and it is our job to write it. Programs for the BASIC Stamp are

written in a language called PBASIC, a Parallax-specific version of the BASIC

(Beginner’s All-purpose Symbolic Instruction Code) programming language. BASIC is

very popular because of its simplicity and English-like syntax. Since its creation at

Dartmouth College in the mid 1960’s it has become one of the dominant

programming languages available for platforms as small as the BASIC Stamp

microcontroller, and as large as mainframe computer systems.

A working program can be as simple as a list of statements. Like this:

 statement 1
 statement 2

 statement 3

 END

This is a very simple, yet valid program structure. What you’ll find, however, is that

most programs do not run in a straight, linear fashion like the listing above. Program

flow is often redirected with branching, looping, and subroutines, with short linear

sections in between. The requirements for program flow are determined by the goal

of the program and the conditions under which the program is running.

Page 12 · StampWorks

BRANCHING – REDIRECTING PROGRAM FLOW

A branching instruction is one that causes the flow of the program to change from its

linear path. In other words, when the program encounters a branching instruction, it

will, in almost all cases, not be running the next [linear] line of code. The program

will usually go somewhere else, often creating a program loop. There are two

categories of branching instructions: unconditional and conditional. PBASIC has two

instructions, GOTO and GOSUB that cause unconditional branching.

Here’s an example of an unconditional branch using GOTO:

Label:
 statement 1

 statement 2

 statement 3

 GOTO Label

We call this an unconditional branch because it always happens. GOTO redirects the

program to another location. The location is specified as part of the GOTO instruction

and is called an address. Remember that addresses start a line of code and are

followed by a colon (:). You’ll frequently see GOTO at the end of the main body of

code, forcing the program statements to run again.

Conditional branching will cause the program flow to change under a specific set of

circumstances. The simplest conditional branching is done with an IF-THEN

construct. PBASIC includes two distinct versions of IF-THEN; the first is used

specifically to redirect program flow to another point based on a tested condition.

Take a look at this listing:

Start:
 statement 1

 statement 2

 statement 3

 IF (condition) THEN Start

In this example, statements 1- 3 will run at least once and then continue to run as

long as the condition evaluates as True. When required, the condition can be tested

prior to the code statements:

Programming Essentials · Page 13

Start:
 IF (condition) THEN
 statement 1

 statement 2

 statement 3

 ENDIF

Note that the code statements are nested in an IF-THEN-ENDIF structure which

does not require a branch label. I f the condition evaluates as False, the program will

continue at the line that follows ENDIF. Another use of this conditional structure is

to add the ELSE clause:

Start:
 IF (condition) THEN
 statement 1

 statement 2

 statement 3

 ELSE
 statement 4

 statement 5

 statement 6

 ENDIF

I f the condition evaluates as True then statements 1 – 3 will run, otherwise

statements 4 – 6 will run.

As your requirements become more sophisticated, you’ll find that you’ll want your

program to branch to any number of locations based on the value of a control

variable. One approach is to use multiple IF-THEN constructs.

 IF (index = 0) THEN Label_0
 IF (index = 1) THEN Label_1
 IF (index = 2) THEN Label_2

This approach is valid and does get used. Thankfully, PBASIC has a special command

called BRANCH that allows a program to jump to any number of addresses based on

the value of an index variable. BRANCH is a litt le more complicated in its setup, but

very powerful in that it can replace multiple IF-THEN statements. BRANCH requires

a control (index) variable and a list of addresses

The previous listing can be replaced with one line of code:

 BRANCH index, [Label_0, Label_1, Label_2]

Page 14 · StampWorks

When index is zero, the program will branch to Label_0, when index is one the

program will branch to Label_1 and so on.

Related to BRANCH is ON-GOTO, in fact, it can serve as direct replacement:

 ON index GOTO Label_0, Label_1, Label_2

Programmers coming from a PC background are probably more familiar with ON-

GOTO, hence its inclusion in PBASIC 2.5.

LOOPING – RUNNING CODE AGAIN AND AGAIN

As demonstrated in the previous section, program loops can be created with

conditional and unconditional branching instructions. Modern variants of BASIC,

including PBASIC 2.5, simplify looping with the DO-LOOP structure. With DO-LOOP

the branching label is no longer required. Here's how DO-LOOP is used to force

unconditional looping of number of code statements:

 DO
 statement 1

 statement 2

 statement 3

 LOOP

As in the previous example, statements 1 - 3 will run in order, continuously.

The DO-LOOP construct can be made conditional by testing before or after the loop

statements:

 DO WHILE (condition)
 statement 1

 statement 2

 statement 3

 LOOP

In this example the loop statements will only run if and while the condition evaluates

as True.
 DO
 statement 1

 statement 2

 statement 3

 LOOP WHILE (condition)

Programming Essentials · Page 15

In the second example, the loop statements will run at least once, even if the

condition evaluates as False. As you can see, the strength of DO-LOOP is that it

simplifies how and where the condition testing occurs.

DO-LOOP adds another type of testing with UNTIL.

 DO
 statement 1

 statement 2

 statement 3

 LOOP UNTIL (condition)

 DO UNTIL (condition)
 statement 1

 statement 2

 statement 3

 LOOP

By using UNTIL, the loop statements will run while the condition evaluates as False.

And, as demonstrated earlier, placing the test at the end of the loop will cause the

loop statements to run at least one time.

Another example of looping is the programmed loop using FOR-NEXT.

FOR controlVar = startVal TO endVal STEP stepSize
 statement 1

 statement 2

 statement 3

NEXT

The FOR-NEXT construct is used to run a section of code a specific number of times.

FOR-NEXT uses a control variable to determine the number of loop iterations. The

size of the variable will determine the upper limit of loop iterations. For example, the

upper limit when using a byte-sized control variable would be 255. In the example

below, controlVar could be defined as a Nib (4-bit) variable as the end value is

less than 16:

FOR controlVar = 1 TO 10
 statement 1

 statement 2

 statement 3

NEXT

	Contact us

