
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

© Parallax, Inc. • ServoPAL (2007.10.30) Page 1 of 9

ServoPAL (#28824): Servo Pulser and Timer

General Description

The ServoPAL is a tiny module that plugs in between your BASIC Stamp and two servo motors to pulse

the motors so your PBASIC program doesn’t have to. In addition, it provides an “alarm clock” function to
perform timing in the background while the BASIC Stamp is busy with other tasks.

Features

• Plugs in between servo headers and servos: no wiring necessary.
• Simplifies PBASIC programming for both standard and continuous-rotation servos.

• Pulses two servos continuously based on single pulses received from the BASIC Stamp.

• Provides an alarm output (200mS to 30 min delay), which can be set by a single pulse.
• All interfacing is done by pulsing: no serial protocols to learn.

• Runs from the servo’s power (up to 6.5VDC): no additional power source needed.
• Compact size: stackable side-to-side with additional units on 0.1” servo headers.

What’s Included

ServoPAL module

What You Need to Provide

• BASIC Stamp and carrier board (such as the BOE).

• One or two servo motors.

Installation

Installation of the ServoPAL is a simple:

1. Unplug the servo connectors from the servo headers.
2. Plug the ServoPAL into the servo headers. (See diagram below.)

3. Plug the servo connectors into the ServoPAL.

© Parallax, Inc. • ServoPAL (2007.10.30) Page 2 of 9

GndGnd
VddVdd
/InpAlarm

GndGnd
VddVdd
Servo 0Servo 1

GndGnd
VddVdd
/InpAlarm

To Servo 1 To Servo 0

 Top View Servo Header Everything Connected

Below is a photo of the ServoPAL installed on a BOE-Bot’s P12/P13 servo header. The wheel servo

motor cables are plugged into the ServoPAL. In this case, the /Inp input pin is P12, the Alarm
output pin is P13, the right servo is Servo 0, and the left servo is Servo 1.

Hardware Interface and Initialization

Interface to the ServoPAL is realized through its /Inp input and Alarm “output”. When the ServoPAL

powers up, both lines are configured as normally-high inputs, pulled up to a nominal +5V through
internal 20K to 50K resistances. Commands to the ServoPAL are sent as negative pulses to the /Inp pin.

If the alarm feature is not used, the BASIC Stamp can use the Alarm pin for any other purpose. If this is

done, however, you must be careful not to trigger an alarm inadvertently, or else a bus conflict may
occur.

The ServoPAL runs autonomously on power obtained from the servo headers. Therefore, it does not reset

when the BASIC Stamp resets, and continues to send out pulses during and after reset if it was sending

them out before. But it can be reset, nonetheless, by sending a pulse of 100mS duration to the /Inp pin.
Here’s the recommended initialization sequence for the ServoPAL in PBASIC:

© Parallax, Inc. • ServoPAL (2007.10.30) Page 3 of 9

' {$STAMP BS2}
' {$PBASIC 2.5}

nInp PIN 12 'Define the input pin.
Alarm PIN 13 'Define the alarm pin.

Restart:

INPUT nInp 'Make sure nInp isn't being driven.

DO UNTIL nInp 'Wait for ServoPAL to power up.
LOOP

LOW nInp 'Set pin to an output and hold it low
PAUSE 100 ' for 100mS.
HIGH nInp 'Raise the pin.

This sequence accomplishes a couple things:

1. In systems, like the BOE-Bot, where the servo power is switched on after the BASIC Stamp
powers up, it will wait for the ServoPAL to be turned on. It does this by setting the nInp line to

an input and waiting for that line to go high, signifying not only that that the ServoPAL has

powered up, but that it has come out of reset and engaged its internal pull-ups.

2. In case the ServoPAL was already running, it then sends a long reset pulse to terminate any

servo pulses, to abort any pending alarm, and to ready the ServoPAL for further commands.

Programming Servo Pulses

Servo pulses are programmed in much the same way you’d send pulses directly to a servo motor, using

the PBASIC PULSOUT command. The only differences are that the pulses are negative-going instead of

positive and that both servos are programmed from the same pin. Here’s an example that will cause the
Servo 0 output to begin pulsing with 1.5mS pulses. These pulses are automatically repeated every 10-

15mS without further intervention from the BASIC Stamp.

PULSOUT nInp, 750

Notice that this is identical to the statement that would have been used, had the servo been connected
directly to the BASIC Stamp. Once the initialization code is executed, your program is primed for

negative-going pulses, and you don’t need to do anything special to send them. Here’s what the
waveforms look like that result from the above example:

/Inp

Servo 0

But what about Servo 1? There’s only one pin, so how does it get programmed? That’s easy: just send
another pulse within 1mS of the first one, and that one will be assigned to Servo 1:

PULSOUT nInp, 750
PULSOUT nInp, 1000

The preceding code will program Servo 0 with a pulse width of 1.5mS and Servo 1 with a pulse width of

2.0mS. Here’s what the waveforms will look like:

© Parallax, Inc. • ServoPAL (2007.10.30) Page 4 of 9

/Inp

Servo 0

Servo 1

To terminate a sequence of pulses on /Inp, just wait at least 2mS before sending another pulse. This

signals the ServoPAL that the next pulse is intended for Servo 0.

Now, what if you want to program only Servo 1 and leave Servo 0 alone? That’s easy, as well. Just

send a very short pulse (4 – 100µS) for Servo 0 first, then a pulse for Servo 1. The ServoPAL will
interpret the short pulse as indicating that you don’t want to change Servo 0’s pulse stream, if one has

already been programmed. Here’s an example:

PULSOUT nInp, 2
PULSOUT nInp, 500

Here’s what the resulting waveforms look like:

/Inp

Servo 0

Servo 1

And finally, what if you want to terminate a servo’s pulse stream? The ServoPAL will only send pulses to a
servo that are between approximately 0.5 and 2.5mS. If it encounters a request for pulses well outside

this range, it will cease sending pulses to the affected servo. Here’s how you can use this to stop sending

pulses to a servo:

PULSOUT nInp, 2000 'Send a 4mS pulse to Servo 0.

Here’s the result:

/Inp

Servo 0

Servo 1

To summarize, here’s a table showing the various pulse durations and what they mean:

4 - 100µS Skip this servo. (Don’t change its output.)

0.5 - 2.5mS Program this pulse width into the affected servo.

Note: Do not send the ServoPAL any pulses less than 4µS in duration. It could easily become
confused, as it might miss them entirely.

© Parallax, Inc. • ServoPAL (2007.10.30) Page 5 of 9

4 – 30mS Kill the servo’s output.

100mS or more Reset the ServoPAL.

Pulse widths outside the individual ranges shown may have unpredictable effects.

Programming the Alarm Function

In addition to servo control, the ServoPAL has an alarm clock (timer) function. You can set an alarm to

occur anywhere from 200mS to 30 minutes after it’s set (triggered). For programming purposes, the
timer is treated by the ServoPAL as a third servo: i.e. after sending pulses for Servo 0 and Servo 1, you

send a pulse for the timer. As soon as such a pulse is received, the Alarm output is pulled low. It will
remain low until the programmed time elapses, whereupon it will again float and be pulled high by means

of the internal pullup resistor.

The relation between the pulse width sent by the BASIC Stamp and the actual time programmed into the

timer is

Programmed time = Pulse width * 50000 (approximately)

So a pulse width of 4µS yields a timeout of 200mS, and a pulse width of 36000µS yields a timeout of 30

minutes. In terms of PULSOUT units, here’s the timing for various BASIC Stamps:

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

Time per
PULSOUT unit

500mS 100mS 100mS 40mS 40mS 100mS 40mS

Maximum
PULSOUT units

3600 18000 18000 45000 45000 18000 45000

Here’s a BS2 program fragment that sets the timeout period to 5 minutes:

PULSOUT nInp, 4 'Skip Servo 0.
PULSOUT nInp, 4 'Skip Servo 1.
PULSOUT nInp, 3000 'Set timeout to 300 seconds.

And here’s the output waveform:

/Inp

Alarm

6mS

300000mS = 5 min.

One additional thing to note about the timer is that it’s retriggerable. What this means is that if you set it

before a previous setting has timed out, it will start over with the new timeout value. This feature makes
the ServoPAL useful as a watchdog timer for the BS2p, BS2pe, and BS2px, which support automatic

polling. As long as you keep resetting the watchdog timer, the Alarm output will stay low. But if your
program hangs up somewhere, the timer will eventually time out and the rising edge on Alarm can be

used to (re)start the program specified by POLLRUN.

© Parallax, Inc. • ServoPAL (2007.10.30) Page 6 of 9

Simple Example Program

Here’s a simple-minded BS2 program that moves a BOE-Bot forward for 5 seconds, then in reverse for

five seconds, using the Alarm output as a timer:

' ===
'
' File...... ServoPAL_Simple_Demo.bs2
' Purpose... Demonstrate ServoPAL capabilites on a BOE-Bot
' Author.... Parallax, Inc.
' E-mail.... support@parallax.com
' Started... 2007.05.01
' Updated... 2007.10.29
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' This simple demo of the ServoPAL, when used with a BOE-Bot, will move the
' robot forward for five seconds, then in reverse for five seconds.

' -----[I/O Definitions]---

nInp PIN 12 'Define the input pin.
Alarm PIN 13 'Define the alarm pin.

' -----[Initialization]--

INPUT nInp 'Make sure nInp isn't being driven.
DO : LOOP UNTIL nInp 'Wait for ServoPAL to power up.

LOW nInp 'Set pin to an output and hold it low
PAUSE 100 ' for 100mS to reset ServoPAL.
HIGH nInp 'Raise the pin.
PAUSE 100

' -----[Program Code]--

PULSOUT nInp, 500 'Program right servo for full forward.
PULSOUT nInp, 1000 'Program left servo for full forward.
PULSOUT nInp, 50 'Program alarm for 5 seconds.

DO : LOOP UNTIL Alarm 'Wait for Alarm.

PULSOUT nInp, 1000 'Program right servo for full reverse.
PULSOUT nInp, 500 'Program left servo fro full reverse.
PULSOUT nInp, 50 'Program alarm for 5 seconds.

DO : LOOP UNTIL Alarm 'Wait for Alarm.

PULSOUT nInp, 2000 'Turn right servo off.
PULSOUT nInp, 2000 'Turn left servo off.
DO:LOOP

IR Roaming Program

The next example is an IR roaming program for the BOE-Bot. To use this program, you should connect
the IR emitters and sensors as shown in Parallax’s Robotics with the Boe-Bot, figure 7-4 (copied below).

© Parallax, Inc. • ServoPAL (2007.10.30) Page 7 of 9

The program works like this:

1. Start the BOE-Bot moving forward.
2. Keep checking for obstacles until one is found.

3. If obstacle is on left or right, begin turning in opposite direction.
4. If obstacle is in front, back up for one second, then begin turning right for at least ½ second.

5. Continue evasive action until clear of obstacles AND any timed motion has completed.

6. Go to step 1.

Here’s the program:

' ===
'
' File...... ServoPAL_IR_Roaming.bs2
' Purpose... BOE-Bot IR Roaming Program using ServoPAL
' Author.... Parallax, Inc.
' E-mail.... support@parallax.com
' Started... 2007.10.29
' Updated...
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' This program uses the ServoPAL in conjuction with IR emitters and
' detectors to steer the BOE-Bot past obstacles in encounters in its
' path.

' -----[I/O Definitions]---

IRDetR PIN 0 'Righthand IR detector.
IREmtR PIN 2 'Righthand IR emitter.
IREmtL PIN 8 'Lefthand IR Emitter.
IRDetL PIN 9 'Lefthand IR detector.

nInp PIN 12 'ServoPAL input pin.
Alarm PIN 13 'ServoPAL alarm pin.

' -----[Constants]---

NONE CON 0
RIGHT CON 1
LEFT CON 2

© Parallax, Inc. • ServoPAL (2007.10.30) Page 8 of 9

BOTH CON 3

BKWD CON 0
FWD CON 3

' -----[Variables]---

Obstacle VAR Nib 'Reading from IR detectors.
Move VAR Nib 'Motor command.
Time VAR Word

' -----[Initialization]--

INPUT nInp 'Make sure nInp isn't being driven.
DO : LOOP UNTIL nInp 'Wait for ServoPAL to power up.

LOW nInp 'Set pin to an output and hold it low
PAUSE 100 ' for 100mS to reset ServoPAL.
HIGH nInp 'Raise the pin.
PAUSE 100

' -----[Program Code]--

DO
Move = FWD 'Start BOE-Bot moving forward,
GOSUB DoMotor ' using the DoMotor routine.

DO
GOSUB ReadIR ' Read obstacle detectors,

LOOP UNTIL Obstacle ' until an obstacle is found.

IF (Obstacle = LEFT) THEN ' Obstacle on the left?

Move = RIGHT ' Yes: Start rotating right.
GOSUB DoMotor

ELSEIF (Obstacle = RIGHT) THEN ' On the right?

Move = LEFT ' Yes: Start rotating left.
GOSUB DoMotor

ELSEIF (Obstacle = BOTH) THEN ' In front?

Move = BKWD ' Yes: Start backing up,
Time = 10 ' and set alarm for 1 sec.
GOSUB DoMotor

DO UNTIL Alarm : LOOP ' Wait for alarm to time out.

Move = RIGHT ' Then start rotating right,
Time = 5 ' setting alarm for 1/2 sec.
GOSUB DoMotor

ENDIF

DO ' Evasive action is being taken.
GOSUB ReadIR ' Read the obstacle detectors.

LOOP UNTIL Obstacle = NONE AND Alarm ' Continue (timed) evasive maneuver,
' until clear AND time is up.

LOOP

' -----[Subroutines]---

'------[ReadIR]--

' Read both IR sensors. Put inverted values into position in Obstacle.

ReadIR:

FREQOUT IREmtR, 1, 38500 'Activate the right IR emitter.
Obstacle.BIT0 = ~IRDetR 'Read the right IR sensor (and invert).
FREQOUT IREmtL, 1, 38500 'Activate the left IR emitter.

© Parallax, Inc. • ServoPAL (2007.10.30) Page 9 of 9

Obstacle.BIT1 = ~IRdetL 'Read the left IR sensor (and invert).
RETURN

'------[DoMotor]---

' Start motors turning to move BOE-Bot in direction indicated. If Time > 0,
' then set alarm and clear Time to zero.

DoMotor:

IF (Move = BKWD) THEN
PULSOUT nInp, 900
PULSOUT nInp, 600

ELSEIF (Move = LEFT) THEN
PULSOUT nInp, 600
PULSOUT nInp, 600

ELSEIF (Move = RIGHT) THEN
PULSOUT nInp, 900
PULSOUT nInp, 900

ELSE
PULSOUT nInp, 600
PULSOUT nInp, 900

ENDIF
IF (Time) THEN

PULSOUT nInp, Time
Time = 0

ENDIF
RETURN

	Contact us

