: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FL SWITCH SFN(T)...

16-Port Standard Function Ethernet Switches for Normal and Extreme Environments

AUTOMATION

Data Sheet

2806_en_C
© PHOENIX CONTACT 2011-06-28

1 Description

The FL SWITCH SFN(T) ...16(15)(14)TX... range of Factory Line switches can be used for quick and cost-effective Ethernet network expansion to the field level. These unmanaged switches provide simple, robust networking in an industrial environment. Due to the narrow housing design, the switches are suitable for use in control cabinets and junction boxes.
The FL SWITCH SFNT... switches allow operation across a wider temperature range than most switches, allowing networks to expand into process industry environments, such as oil/gas, chemical, water/wastewater, wind energy, security, and monitoring.
The FL SWITCH SFN(T)...16(15)(14)TX... switches support the auto negotiation function on the RJ45 ports and offer transmission speeds of $10 / 100 \mathrm{Mbps}$. Mixed operation for the connection of segments with different data transmission speeds is also supported. The RJ45 ports offer an autocrossing function, which means it is not necessary to make a distinction between 1:1 and crossover cables. Fiber optic ports are available in an SC format and offer speeds of 100 Mbps . The fiber optic ports extend the segment length to 2000 m or more, depending on the quality of the fiber optic cable.

2 Features and Benefits

- -40 to $75^{\circ} \mathrm{C}$ operating range for SFNT switches
- 0 to $60^{\circ} \mathrm{C}$ operating range for SFN switches
- Auto-negotiation and autocross simplify cabling
- Couple copper network segments with different bit rates with automatic detection of the data transmission speed of 10 or 100 Mbps
- Individual LEDs at each port indicate communication activity and data rate
- Redundant power supply capable with local (LED) and remote (dry contact) alarms to indicate failure of one or both power supplies
- Available fiber optic options for extended distance and electrical noise immunity
- Fiber optic ports available in SC formats

Make sure you always use the latest documentation. It can be downloaded at www. phoenixcontact.net/catalog.

\square \square

3 Ordering Data

Description
Ethernet switch, with 16 RJ45 ports for 10/100 Mbps
Ethernet switch, with 15 RJ45 ports, 1 fiber optic port in SC format for 10/100 Mbps
Ethernet switch, with 14 RJ45 ports, 2 fiber optic ports in SC format for 10/100 Mbps
Ethernet switch, wide temperature, with 16 RJ45 ports for 10/100 Mbps
Ethernet switch, wide temperature, with 15 RJ45 ports, 1 fiber optic port in SC format for 10/100 Mbps
Ethernet switch, wide temperature, with 14 RJ45 ports, 2 fiber optic ports in SC format for $10 / 100 \mathrm{Mbps}$

Type	Order No.	Pcs./Pkt.
FL SWITCH SFN 16TX	2891933	1
FL SWITCH SFN 15TX/FX	2891934	1
FL SWITCH SFN 14TX/2FX	2891935	1
FL SWITCH SFNT 16TX	2891952	1
FL SWITCH SFNT 15TX/FX	2891953	1
FL SWITCH SFNT 14TX/2FX	2891954	1

Accessories

Description	Type	Order No.	Pcs./Pkt.
Universal end clamp	E/NS 35 N	0800886	50
Patch angle with 2 ports in CAT 5e	FL PF 2TX CAT5E	2891165	1
Patch angle with 8 ports in CAT 5e	FL PF 8TX CAT5E	2891178	1
Patch angle with 2 ports in CAT 6	FL PF 2TX CAT6	2891068	1
Patch angle with 8 ports in CAT 6	FL PF 8TX CAT6	2891071	1
Patch angle with security elements for 2 ports in CAT 5e	FL PF SEC 2TX	2832687	1
Patch angle with security elements for 8 ports in CAT 5e	FL PF SEC 8TX	2832690	1
Patchbox $8 \times$ RJ45 CAT 5e, pre-assembled, can be retrofitted	FL PBX 87X	2832496	1
Patch cable, CAT 5, pre-assembled, 0.3 m long	FL CAT5 PATCH 0,3	2832250	10
Patch cable, CAT 5, pre-assembled, 0.5 m long	FL CAT5 PATCH 0,5	2832263	10
Patch cable, CAT 5, pre-assembled, 1.0 m long	FL CAT5 PATCH 1,0	2832276	10
Patch cable, CAT 5, pre-assembled, 1.5 m long	FL CAT5 PATCH 1,5	2832221	10
Patch cable, CAT 5, pre-assembled, 2.0 m long	FL CAT5 PATCH 2,0	2832289	10
Patch cable, CAT 5, pre-assembled, 3.0 m long	FL CAT5 PATCH 3,0	2832292	10
Patch cable, CAT 5, pre-assembled, 5.0 m long	FL CAT5 PATCH 5,0	2832580	10
Patch cable, CAT 5, pre-assembled, 7.5 m long	FL CAT5 PATCH 7,5	2832616	10
Patch cable, CAT 5, pre-assembled, 10.0 m long	FL CAT5 PATCH 10	2832629	10
Security element for FL CAT patch	FL PATCH SAFE CLIP	2891246	20
Color marker for FL PATCH GUARD, black	FL PATCH GUARD CCODE BK	2891136	12
Color marker for FL PATCH GUARD, blue	FL PATCH GUARD CCODE BU	2891233	12
Color marker for FL PATCH GUARD, orange	FL PATCH GUARD CCODE OG	2891330	12
Color marker for FL PATCH GUARD, yellow	FL PATCH GUARD CCODE YE	2891437	12
Color marker for FL PATCH GUARD, turquoise	FL PATCH GUARD CCODE TQ	2891534	12
Color marker for FL PATCH GUARD, green	FL PATCH GUARD CCODE GN	2891631	12
Color marker for FL PATCH GUARD, red	FL PATCH GUARD CCODE RD	2891738	12
Color marker for FL PATCH GUARD, violet	FL PATCH GUARD CCODE VT	2891835	12
Security element for FL PATCH	FL PATCH GUARD	2891424	20
FL PATCH GUARD, key	FL PATCH GUARD KEY	2891521	1
Dust protection cap	FL RJ45 PROTECT CAP	2832991	10

4 Technical Data

General Data

Function	Switch/repeater; conforms to standard IEEE 802.3		
Latency of the communication processor	8μ s plus frame time		
Housing dimensions (width x height x depth)	$70 \times 135 \times 110 \mathrm{~mm}$		
Weight, without connectors	870 g		
Operating temperature			
FL SWITCH SFN... FL SWITCH SFNT..	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		
Storage temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		
Degree of protection	IP20, DIN 40050, IEC 60529		
Protection class	Class 3 VDE 0106; IEC 60536		
Humidity (operation and storage)	5% to 95%, no condensation		
Air pressure (operation)			
FL SWITCH SFN.. FL SWITCH SFNT...	86 kPa to $108 \mathrm{kPa}, 1500 \mathrm{~m}$ above sea level 62 kPa to $108 \mathrm{kPa}, 4160 \mathrm{~m}$ above sea level		
Air pressure (storage)			
FL SWITCH SFN... FL SWITCH SFNT..	66 kPa to $108 \mathrm{kPa}, 3500 \mathrm{~m}$ above sea level 62 kPa to $108 \mathrm{kPa}, 4160 \mathrm{~m}$ above sea level		
Mounting	NS35 (EN 60715)		
Preferred mounting position	Perpendicular to a standard mounting rail		
Connection to protective earth ground	Snapped onto a grounded mounting rail		
Supply Voltage ($\mathbf{U S}_{\text {S }}$)			
Connection type	Removable, screw-clamp connector		
Wire size (solid/stranded/AWG)	0.2 to $2.5 \mathrm{~mm}^{2} / 0.2$ to $2.5 \mathrm{~mm}^{2} / 30-12$ AWG		
Torque	0.6-0.8 Nm ($5-7 \mathrm{lb} \mathrm{l}_{\mathrm{f}}-\mathrm{in}$. $)$		
Recommended PE wire size	$2.5 \mathrm{~mm}^{2}$		
Nominal power supply	24 V DC		
Permissible ripple	$3.6 \mathrm{~V}_{\mathrm{pp}}$ within the permissible voltage range		
Permissible voltage range	12 V DC to 48 V DC		
Test voltage	500 V DC for one minute		
Protection against polarity reversal	Present		
Current Consumption and Inrush Current			
	Current Consumption (max)		Inrush Current
FL SWITCH SFN(T) 16TX	550 mA @ 12 V DC	275 mA @ 24 V DC	9.85 A @ $30 \mu \mathrm{~s}$
FL SWITCH SFN(T) 15TX/FX	630 mA @ 12 V DC	315 mA @ 24 V DC	$9.7 \mathrm{~A} @ 30 \mu \mathrm{~s}$
FL SWITCH SFN(T) 14TX/2FX	715 mA @ 12 V DC	350 mA @ 24 V DC	10.0 A @ $30 \mu \mathrm{~s}$
Interfaces			
Total number of RJ45 Ethernet interfaces	14/15/16		
MAC Address Table Size (Entries)	4 K		
Properties of RJ45 Ports			
Connection format	8-pos. RJ45 female connector on the switch		
Connection medium	Twisted-pair cable with a conductor cross section of $0.14 \mathrm{~mm}^{2}$ to $0.22 \mathrm{~mm}^{2}$		
Cable impedance	100Ω		
Transmission speed	10/100 Mbps		
Maximum network segment length	100 m		
Properties of Fiber Optic Ports			
Connection format	SC duplex female connector		
Fiber type	Multimode		
Laser protection	Class 1 according to DIN EN 60825-1:2001-11		

Interfaces (Continued)	
Transmission rate	100 Mbps full duplex
Wavelength	1300/1310 nm
Fiber optic segment length	12.1 km glass fiber with F-G 62.5/125 $0.7 \mathrm{~dB} / \mathrm{km}$ F1000 3.3 km glass fiber with F-G $62.5 / 1252.6 \mathrm{~dB} / \mathrm{km}$ F600
	7.1 km glass fiber with F-G 50/125 $0.7 \mathrm{~dB} / \mathrm{km}$ F1200 3.1 km glass fiber with F-G 50/125 $1.6 \mathrm{~dB} / \mathrm{km}$ F800
Transmission power (medium type) dynamic (average)	
Minimum Maximum	$-23.5 \mathrm{dBm}(50 / 125 \mu \mathrm{~m}) /-20 \mathrm{dBm}(62.5 / 125 \mu \mathrm{~m})$ $-14 \mathrm{dBm}(50 / 125 \mu \mathrm{~m}) /-14 \mathrm{dBm}(62.5 / 125 \mu \mathrm{~m})$
Transmission power (medium type) static	
Minimum Maximum	$-22.5 \mathrm{dBm}(50 / 125 \mu \mathrm{~m}) /-19 \mathrm{dBm}(62.5 / 125 \mu \mathrm{~m})$ $-14 \mathrm{dBm}(50 / 125 \mu \mathrm{~m}) /-14 \mathrm{dBm}(62.5 / 125 \mu \mathrm{~m})$
Receiver sensitivity	
Minimum Maximum	-31 dBm (dynamic) / -31 dBm (static) -14 dBm (dynamic) / -14 dBm (static)
Alarm Contacts	
Voltage	24 V DC
Current carrying capacity	1 A maximum including inrush
Mechanical Tests	
Shock test according to IEC 60068-2-27	Operation: 25 g , 11 ms period, half-sine shock pulse Storage/transport: 50g, 11 ms period, half-sine shock pulse
Vibration resistance according to IEC 60068-2-6	Operation/storage/transport: $5 \mathrm{~g}, 150 \mathrm{~Hz}$, Criterion 3
Free fall according to IEC 60068-2-32	1 m
Conformance With EMC Directives	
Developed according to IEC 61000-6-2	
IEC 61000-4-2 (ESD)	Contact: $\pm 4 \mathrm{kV}$, Criterion B Air: $\pm 8 \mathrm{kV}$, Criterion B
IEC 61000-4-3 (radiated-noise immunity)	$10 \mathrm{~V} / \mathrm{m}$, Criterion A
IEC 61000-4-4 (burst)	Ports: $\pm 1 \mathrm{kV}$, Criterion B DC power: $\pm 2 \mathrm{kV}$, Criterion B
IEC 61000-4-5 (surge)	Ports: ± 1 kV, Criterion B DC power: $\pm 500 \mathrm{~V}$, Criterion B
IEC 61000-4-6 (conducted noise immunity)	$10 \mathrm{~V}_{\text {rms }}$, Criterion A
IEC 61000-4-8 (noise immunity against magnetic fields)	$30 \mathrm{~A} / \mathrm{m}$, Criterion A
EN 55022 (noise emission)	Class A
Approvals	
General	C
	${ }^{\text {c }}$ (${ }_{\text {us }}$
	ROHS EEE 2002/95/EC, WEEE 2002/96/EC
Hazardous location	(4L) Class I, Zone 2 AEx nC IIC T4, EX nC nL IIC T4 X (【L) Class I, Division 2 Groups A, B, C, D, T4

5 Overview

Figure 1 Connectors and LED (...15TX/FX shown)

5.1 Diagnostic and Status Indicators

Des.	Color	Status	Meaning
US1 and US2	green	ON	Supply voltage (US) in the tolerance range
		OFF	Supply voltage (US) too low
Link/ACT	green	ON	Valid network connection
		Flashing	Transmitting or receiving data

At high data rates the Link/ACT LED blinking may appear to be a constant rate.

6 Requirements for Operation in Hazardous Locations

\triangleWARNING:
These instructions must be followed for proper use in hazardous locations.

The device must be installed within an enclosure rated at least IP54

Do not open the enclosure unless power has been switched off or the area is known to be non-hazardous.

Provisions shall be made to prevent the rated voltage from being exceeded by transient disturbances of more than 40\%.

7 Installation

CAUTION:

Only qualified personnel may start up and operate this device. Qualified personnel are persons authorized to start up, ground and mark devices, systems, and equipment according to the standards of safety technology.

NOTE:

The FL SWITCH SFN(T)... module is designed for SELV and PELV operation according to IFC 61140/EN 61140.

Install the FL SWITCH SFN(T)... on a clean NS 35 rail. To avoid contact resistance, use only clean, corrosion-free rails that meet the EN 60715 standard. End clamps can be mounted on both sides of the module to stop the modules from slipping on the rail.

NOTE:

Connect the mounting rail to protective earth ground using a grounding terminal block. The modules are grounded when they are snapped onto the rail. Connect protective earth ground with low impedance.

7.1 Assembly

1. Place the module onto the rail from above. The upper holding keyway must be hooked onto the top edge of the rail.
2. Push the module from the front towards the mounting surface.
3. Once the module has been snapped on properly, check that it is fixed securely on the rail.

7.2 Removal

1. Insert a suitable tool (e.g., needle-nose pliers) into the arresting latch and pull it down.
2. Pull the module slightly away from the mounting surface.
3. Lift the module from the rail.

7.3 Power Connection

The switch is designed for SELV and PELV operation at +24 V DC according to IEC 61140/EN 61140. Only SELV and PELV according to the defined standards may be used for supply purposes.
The FL SWITCH SFN(T)...16(15)(14)TX... switches provide the ability to connect redundant power supplies (see Figure 2). If redundant power supply is not required, a single power supply can be used (see Figure 3).
Snapping the switch onto a grounded rail connects it to the ground potential. In an environment particularly prone to EMI, noise immunity can be increased by an additional lowimpedance connection to protective earth (see Figure 2 and Figure 3).

Figure 2 Power connections for redundant power supply

Figure 3 Power connections for single power supply

7.4 Alarm Contact

The FL SWITCH SFN(T)...16(15)(14)TX... switch provides contacts (R1, R2) for remote monitoring if a power failure is detected. Alarms are triggered if one or both power supplies fail.
The alarm relay is a normally closed type. When there are no faults, the contact is held open. When a fault occurs, the relay is de-energized to close the contact.

Figure 4 Remote monitoring connection

7.5 Ethernet Interface

The FL SWITCH SFN(T)... has 14, 15, or 16 Ethernet ports on the front in RJ45 format to which only twisted-pair cables with an impedance of 100Ω can be connected. The data transmission speed is $10 / 100 \mathrm{Mbps}$. In addition, every port has an autocrossing function: it is not necessary to make a distinction between 1:1 or crossover Ethernet cables.

Figure $5 \quad$ RJ45 pin assignment

8 Switching Characteristics

Store and Forward

All data telegrams received by the switch are saved and their validity checked. Invalid or faulty data packets (>1522 bytes or CRC errors) and fragments (< 64 bytes) are rejected. Valid data telegrams are forwarded by the switch. The switch always forwards the data using the data transmission speed that is used in the destination network segment.

Multi-Address Function

The switch independently learns the addresses for termination devices, which are connected via a port, by
evaluating the source addresses in the data telegrams. Only packets with unknown addresses, with a source address of this port or with a multicast/broadcast address in the destination address field are forwarded via the corresponding port. The switch can store addresses in its address table with an aging time of 5 minutes. This is important when more than one termination device is connected to one or more ports. In this way, several independent subnetworks can be connected to one switch.

A restart deletes the entire address table.

9 Dimensions

