

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN LOW POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/225

Devices Qualified Level

2N1711 2N1890

JAN JANTX

MAXIMUM RATINGS

WINIMITED TO THE PARTY OF THE P				
Ratings	Symbol	2N1711	2N1890	Unit
Collector-Base Voltage	V_{CBO}	75	100	Vdc
Emitter-Base Voltage	V_{EBO}	7.0		Vdc
Collector Current	I_{C}	500		mAdc
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$	D	0.8		W
@ $T_C = +25^0 C^{(2)}$	P_{T}	3	.0	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Impedance	$Z_{ heta JX}$	58	⁰ C/W

¹⁾ Derate linearly 4.57 mW/ $^{\circ}$ C for $T_A > 25^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted)

Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage					
$I_C = 100 \mu\text{Adc}$	2N1711, S	$V_{(BR)CBO}$	75		Vdc
·	2N1890, S		100		
Collector-Emitter Breakdown Voltage					
$R_{BE} = 10 \Omega$, $I_C = 100 \text{ mAdc}$	2N1711, S	$V_{(BR)CER}$	50		Vdc
	2N1890, S		80		
Collector-Emitter Breakdown Voltage					
$I_C = 30 \text{ mAdc}$	2N1711, S	$V_{(BR)CEO}$	30		Vdc
	2N1890, S		60		
Emitter-Base Breakdown Voltage					
$I_E = 100 \mu\text{Adc}$		$V_{(BR)EBO}$	7.0		Vdc
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ Vdc}$	2N1711	I_{CBO}		10	ηAdc
$V_{CB} = 80 \text{ Vdc}$	2N1890			10	
Emitter-Base Cutoff Current		т			A 1
$V_{EB} = 5.0 \text{ Vdc}$		I_{EBO}		5.0	ηAdc

6 Lake Street, Lawrence, MA 01841

120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

²⁾ Derate linearly 17.2 mW/ $^{\circ}$ C for T_C > 25 $^{\circ}$ C

2N1711, 2N1890 JAN SERIES

Characteristics		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)					
Forward-Current Transfer Ratio					
$I_C = 10 \mu\text{Adc}, V_{CE} = 10 \text{Vdc}$			20		
$I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		h_{FE}	100	300	
$I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	2N1711, S		50		
Collector-Emitter Saturation Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	2N1711, S	V _{CE(sat)}		1.5	Vdc
	2N1890, S			5.0	
$I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$	2N1890, S			1.2	
Base-Emitter Saturation Voltage					
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$		V _{BE(sat)}		1.3	Vdc
$I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mVdc}$	2N1890, S			0.9	
DYNAMIC CHARACTERISTICS					
Small-Signal Short-Circuit Forward-Current Trans	sfer Ratio				
$I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$		h _{fe}	80	200	
$I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$			90	270	
Magnitude of Common Emitter Small-Signal Shor	t-Circuit				
Forward-Current Transfer Ratio		h _{fe}			
$I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}; f = 20 \text{ MHz}$		·	3.5	12	
Small-Signal Short-Circuit Input Impedance					Ω
$I_C = 5.0 \text{ mAdc}, V_{CB} = 10 \text{ Vdc}$		h _{ib}	4.0	8.0	52
Small-Signal Short-Circuit Output Admittance					
$I_C = 5.0 \text{ mAdc}, V_{CB} = 10 \text{ Vdc}$		h _{ob}			μΩ
	2N1711, S			1.0	μΔ2
	2N1890, S			.03	
Output Capacitance					_
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	2N1711, S	C_{obo}	8.0	25	pF
	2N1890, S		5.0	15	
SWITCHING CHARACTERISTICS			1	1	
Turn-On Time + Turn-Off Time		ton + toff		20	ηs
(See figure 1 of MIL-PRF-19500/225)				30	- 1

⁽³⁾ Pulse Test: Pulse Width 250 to 350 μ s, Duty Cycle \leq 2.0%.