imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

7516 Central Industrial Drive Riviera Beach, Florida 33404 PHONE: (561) 842-0305 FAX: (561) 845-7813

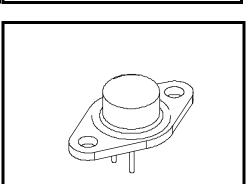
APPLICATIONS:

- Drivers
- Switches
- Medium-Power Amplifiers

FEATURES:

- Low Saturation Voltage: 0.6 V_{CE(sat)} @ I_C = 1.0 Amp
- High Gain Characteristics: hFE @ I_C = 250 mA: 30-100
- Excellent Safe Area Limits
- Low Collector Cutoff Current: 100 nA (Max) 2N3741A

DESCRIPTION:


These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM RATINGS:

SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CEO} *	Collector-Emitter Voltage	80	Vdc
V _{EB} *	Emitter-Base Voltage	7.0	Vdc
V _{CB} *	Collector-Base Voltage	80	Vdc
Ic*	Peak Collector Current	10	Adc
Ic*	Continuous Collector Current	4.0	Adc
I _B *	Base Current	2.0	Adc
T _{STG} *	Storage Temperature	-65 to 200	°C
TJ*	Operating Junction Temperature	-65 to 200	°C
P _D *	Total Device Dissipation	25	Watts
_	T _C = 25°C		
	Derate above 25°C	0.143	W/°C
θJC	Thermal Impedance	7	°C/W

* Indicates JEDEC registered data.

TO-66

2N3741A

Medium Power

PNP Transistors

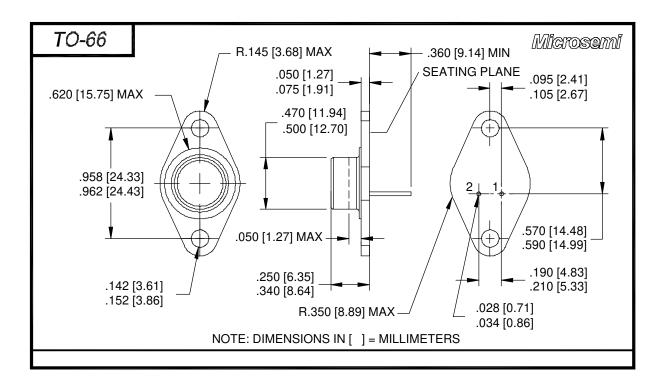
MSC1042.PDF 03-12-99

ELECTRICAL CHARACTERISTICS: (25°Case Temperature Unless Otherwise Noted)

Microsemi

Progress Powered by Technology

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VAI	VALUE	
		TEST CONDITIONS	Min.	Max.	Units
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage	I _C = 100 mAdc, I _B = 0 (Note 1)	80		Vdc
I _{EB0*}	Emitter Base Cutoff Current	V _{EB} = 7.0 Vdc		100	nAdc
I _{CEX*}	Collector Cutoff Current	$V_{CE} = 80 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}$		100	nAdc
		$V_{CE} = 60 \text{ Vdc}, V_{BE(off)} = 1.5 \text{ Vdc}, T_{C} = 150^{\circ}\text{C}$		0.5	mAdc
I _{CEO} *	Collector-Emitter Cutoff Current	$V_{CE} = 60 \text{ Vdc}, I_B = 0$		1.0	μAdc
Ісво*	Collector Base Cutoff Current	$V_{CB} = 80 \text{ Vdc}, I_E = 0$		100	nAdc
h _{FE} *	DC Current Gain (Note 1)	$I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$	40		
		$I_C = 250 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$	30	100	
		$I_{C} = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$	20		
		$I_{C} = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc}$	10		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	$I_{\rm C}$ = 1.0 Adc, $I_{\rm B}$ = 125 mAdc		0.6	Vdc
V _{BE*}	Base-Emitter Voltage (Note 1)	$I_{C} = 250 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$		1.0	Vdc
f _T *	Current Gain Bandwidth Product	$I_{C} = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$	3.0		MHz
h _{fe} *	Small-Signal Current Gain	$I_{C} = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}$	25		
C _{ob} *	Common Base Output Capacitance	$V_{CB} = 10 \text{ Vdc}, \ I_C = 0, \ f = 100 \text{ kHz}$		100	pF


Note 1: Pulse Test: PW $\leq 300 \mu s,$ Duty Cycle $\leq 2.0\%$

* Indicates JEDEC registered data.

2N3741A

PACKAGE MECHANICAL DATA:

