: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NPN HIGH POW ER SILICON TRANSISTOR
 Qualified per M IL-PRF-1 9500/ 371

Devices

2N3902
2N5157

Qualified Level

JAN JANTX

MAXIMUM RATINGS

Ratings	Symbol	2N3902	2N5157	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	400	500	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	5.0	6.0	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	700	Vdc	
Base Current	I_{B}	2.0	Adc	
Collector Current	I_{C}	3.5	Adc	
Total Power Dissipation	@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}^{(1)}$ O $\mathrm{T}_{\mathrm{C}}=+75^{\circ} \mathrm{C}^{(2)}$	P_{T}	5.0	W
Operating \& Storage Temperature Range	$\mathrm{T}_{\mathrm{j},} \mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{0} \mathrm{C}$	

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	1.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1) Derate linearly $29 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$
2) Derate linearly $0.8 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>+75^{\circ} \mathrm{C}$
 Outline

ELECTRICAL CHARACTERISTICS

Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=325 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CE}}=400 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \text { 2N3902 } \\ & \text { 2N5157 } \end{aligned}$	$\mathrm{I}_{\text {CEO }}$		$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{CE}}=700 \mathrm{Vdc}$		$\mathrm{I}_{\text {CEX }}$		500	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\begin{aligned} & \mathrm{V}_{\mathrm{EB}}=5.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EB}}=6.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \text { 2N3902 } \\ & \text { 2N5157 } \\ & \hline \end{aligned}$	$\mathrm{I}_{\text {EbO }}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{Adc}$

ON CHARACTERISTICS ${ }^{(3)}$

Base-Emitter Saturation Voltage				
$\mathrm{I}_{\mathrm{C}}=1.0$ Adc; $\mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}$	$\mathrm{V}_{\mathrm{BE}(\text { (sat })}$		1.5	Vdc
$\mathrm{I}_{\mathrm{C}}=3.5$ Adc; $\mathrm{I}_{\mathrm{B}}=0.7 \mathrm{Adc}$				
Collector-Emitter Saturation Voltage				
$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}$			0.8	Vdc
$\mathrm{I}_{\mathrm{C}}=3.5 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B}}=0.7 \mathrm{Adc}$		2.5		

ELECTRICAL CHARACTERISTICS (con't)

Characteristics		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS ${ }^{(3)}$ (con't)					
Forward-Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$ $\mathrm{I}_{\mathrm{C}}=3.5 \mathrm{Adc} ; \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$		$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 25 \\ 30 \\ 10 \\ 5 \end{gathered}$	90	
Collector-Emitter Sustaining Voltage $\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}$	$\begin{array}{r} \text { 2N3902 } \\ \text { 2N5157 } \\ \hline \end{array}$	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 325 \\ & 400 \\ & \hline \end{aligned}$		Vdc

DYNAMIC CHARACTERISTICS

Small-Signal Short-Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=0.2$ Adc; $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}$	$\left\|\mathrm{h}_{\mathrm{fe}}\right\|$	2.5	25	
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{obo}}$		250	pF

SWITCHING CHARACTERISTICS

Turn-On Time $V_{\mathrm{CC}}=125 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B} 1}=0.1 \mathrm{Adc}$	${ }^{\mathrm{t}}$ on		0.8	$\mu \mathrm{~s}$
Turn-Off Time $\mathrm{V}_{\mathrm{CC}}=125 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B} 1}=0.1 \mathrm{Adc} ;-\mathrm{I}_{\mathrm{B} 2}=0.50 \mathrm{Adc}$	'toff		1.7	$\mu \mathrm{~s}$

SAFE OPERATING AREA

DC Tests (continuous)

$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} ; \mathrm{t} \geq 1.0 \mathrm{~s}$ (See Figure 3 of MIL-PRF-19500/371)
Test 1
$\mathrm{V}_{\mathrm{CE}}=28.6 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=3.5 \mathrm{Adc}$
Test 2
$\mathrm{V}_{\mathrm{CE}}=70 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.43 \mathrm{Adc}$

Test 3

$\mathrm{V}_{\mathrm{CE}}=325 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=55 \mathrm{mAdc} \quad 2 \mathrm{~N} 3902$
$\mathrm{V}_{\mathrm{CE}}=400 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=35 \mathrm{mAdc} \quad$ 2N5157

Switching Tests
 Load condition C (unclamped inductive load)

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; duty cycle $\leq 10 \% ; \mathrm{R}_{\mathrm{S}}=0.1 \Omega$ (See Figure 4 of MIL-PRF-19500/371)
Test 1
$\mathrm{t}_{\mathrm{P}}=$ approximately 3 ms (vary to obtain I_{C}; $\mathrm{R}_{\mathrm{BB} 1}=20 \Omega ; \mathrm{V}_{\mathrm{BB} 1}=10 \mathrm{Vdc} ; \mathrm{R}_{\mathrm{BB} 2}=3 \mathrm{k} \Omega$;
$\mathrm{V}_{\mathrm{BB} 2}=1.5 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=3.5 \mathrm{Adc} ; \mathrm{L}=60 \mathrm{mH} ; \mathrm{R}=3 \Omega ; \mathrm{R}_{\mathrm{L}} \leq 14 \Omega$.

Test 2

$\mathrm{t}_{\mathrm{P}}=$ approximately 3 ms (vary to obtain $\mathrm{I}_{\mathrm{C}} ; \mathrm{R}_{\mathrm{BB} 1}=100 \Omega ; \mathrm{V}_{\mathrm{BB} 1}=10 \mathrm{Vdc} ; \mathrm{R}_{\mathrm{BB} 2}=3 \mathrm{k} \Omega$;
$\mathrm{V}_{\mathrm{BB} 2}=1.5 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=0.6 \mathrm{Adc} \mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc} ; \mathrm{L}=200 \mathrm{mH} ; \mathrm{R}=8 \Omega ; \mathrm{R}_{\mathrm{L}} \leq 83 \Omega$.

Switching Tests

Load condition (clamped inductive load)
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$; duty cycle $\leq 10 \%$. (See Figure 5 of MIL-PRF-19500/371)

Test 1

$\mathrm{t}_{\mathrm{P}}=$ approximately 30 ms (vary to obtain $\mathrm{I}_{\mathrm{C}} ; \mathrm{R}_{\mathrm{S}}=0.1 \Omega ; \mathrm{R}_{\mathrm{BB} 1}=20 \Omega ; \mathrm{V}_{\mathrm{BB} 1}=10 \mathrm{Vdc} ; \mathrm{R}_{\mathrm{BB} 2}=100 \Omega$;
$\mathrm{V}_{\mathrm{BB} 2}=1.5 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=3.5$ Adc; $\mathrm{L}=60 \mathrm{mH} ; \mathrm{R}=3 \Omega ; \mathrm{R}_{\mathrm{L}} \geq 0 \Omega$.
(A suitable clamping circuit or diode can be used.)
Clamp Voltage $=400+0,-5 \mathrm{Vdc} \quad$ 2N3902
Clamp Voltage $=500+0,-5 \mathrm{Vdc} \quad 2 \mathrm{~N} 5157$
(Clamped voltage must be reached)
3.) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

6 Lake Street, Lawrence, MA 01841

