imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN HIGH POW ER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/371

DevicesQualified Level2N39022N5157JAN
JANTX

MAXIMUM RATINGS

	~			
Ratings	Symbol	2N3902	2N5157	Unit
Collector-Emitter Voltage	V _{CEO}	400	500	Vdc
Emitter-Base Voltage	V_{EBO}	5.0	6.0	Vdc
Collector-Base Voltage	V _{CBO}	70)0	Vdc
Base Current	IB	2.0		Adc
Collector Current	I _C	3.5		Adc
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)}$	P _T	5.0 100		W
$@ T_{\rm C} = +75^{0} {\rm C}^{(2)}$				W
Operating & Storage Temperature Range	T _j , T _{stg}	-65 to +200		⁰ C
THERMAL CHARACTERISTICS				
Characteristics	Symbol	M	ax.	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.	25	⁰ C/W
1) Denote linearly 20 mW/OC for T > 1250C				

*See Appendix A for Package Outline

1) Derate linearly 29 mW/ 0 C for T_A > +25 0 C 2) Derate linearly 0.8 W/ 0 C for T_C > +75 0 C

ELECTRICAL CHARACTERISTICS

Characteristi	cs	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Cutoff Current					
$V_{CE} = 325 \text{ Vdc}$	2N3902	I _{CEO}		250	μAdc
$V_{CE} = 400 \text{ Vdc}$	2N5157			250	
Collector-Emitter Cutoff Current		т		500	uAda
$V_{BE} = 1.5 \text{ Vdc}; V_{CE} = 700 \text{ Vdc}$		I _{CEX}		300	μAdc
Emitter-Base Cutoff Current					
$V_{EB} = 5.0 \text{ Vdc}$	2N3902	I _{EBO}		200	μAdc
$V_{EB} = 6.0 \text{ Vdc}$	2N5157			200	
ON CHARACTERISTICS ⁽³⁾					
Base-Emitter Saturation Voltage					
$I_{\rm C} = 1.0 \text{ Adc}; I_{\rm B} = 0.1 \text{ Adc}$		V _{BE(sat)}		1.5	Vdc
$I_{\rm C} = 3.5 \text{ Adc}; I_{\rm B} = 0.7 \text{ Adc}$				2.0	
Collector-Emitter Saturation Voltage					
$I_{C} = 1.0 \text{ Adc}; I_{B} = 0.1 \text{ Adc}$		V _{CE(sat)}		0.8	Vdc
$I_{\rm C} = 3.5 \text{ Adc}; I_{\rm B} = 0.7 \text{ Adc}$				2.5	
6 Lake Street, Lawrence, MA 01841					120101
1-800-446-1158 / (978) 794-1666 / Fa	x: (978) 689-0803				Page 1 of 2

2N3902, 2N5157 JAN SERIES

DN CHARACTERISTICS ⁽³⁾ (con't) Forward-Current Transfer Ratio	Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio	·			
- or many controls francis				
$I_{C} = 0.5 \text{ Adc}; V_{CE} = 5.0 \text{ Vdc}$		25		
$I_{\rm C} = 1.0 \text{ Adc}; V_{\rm CE} = 5.0 \text{ Vdc}$	h _{FE}	30	90	
$I_{\rm C} = 2.5 \text{ Adc}; V_{\rm CE} = 5.0 \text{ Vdc}$	112	10		
$I_C = 3.5$ Adc; $V_{CE} = 5.0$ Vdc		5		
Collector-Emitter Sustaining Voltage		Ū		
$I_{\rm C} = 100 \text{ mAdc}$ 2N3902	V _{CEO(sus)}	325		Vdc
2N5157	· CEO(sus)	400		
DYNAMIC CHARACTERISTICS				
Small-Signal Short-Circuit Forward Current Transfer Ratio				
$I_{C} = 0.2$ Adc; $V_{CE} = 10$ Vdc, $f = 1$ MHz	h _{fe}	2.5	25	
Output Capacitance				
$V_{CB} = 10 \text{ Vdc}; I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		250	pF
SWITCHING CHARACTERISTICS				
Turn-On Time	+			
$V_{CC} = 125$ Vdc; $I_C = 1.0$ Adc; $I_{B1} = 0.1$ Adc	ton		0.8	μs
Turn-Off Time				
$V_{CC} = 125 \text{ Vdc}; I_C = 1.0 \text{ Adc}; I_{B1} = 0.1 \text{ Adc}; -I_{B2} = 0.50 \text{ Adc}$	toff		1.7	μs
SAFE OPERATING AREA				
DC Tests (continuous)				
$T_{\rm C} = +25^{\circ}{\rm C}; t \ge 1.0 \text{ s}$ (See Figure 3 of MIL-PRF-19500/371)				
$V_{CE} = 28.6 \text{ Vdc}, I_C = 3.5 \text{ Adc}$				
Test 2				
$V_{CE} = 70 \text{ Vdc}, I_C = 1.43 \text{ Adc}$				
Test 3				
$V_{CE} = 325 \text{ Vdc}, I_C = 55 \text{ mAdc}$ 2N3902				
$V_{CE} = 400 \text{ Vdc}, I_C = 35 \text{ mAdc}$ 2N5157				
Switching Tests				
Load condition C (unclamped inductive load)				
$T_{\rm C} = 25^{\circ}$ C; duty cycle $\le 10\%$; $R_{\rm S} = 0.1 \Omega$ (See Figure 4 of MIL-PH	RF-19500/371)			
Test 1				
t_P = approximately 3 ms (vary to obtain I_C); R_{BB1} = 20 Ω ; V_{BB1} = 10				
$V_{BB2} = 1.5 \text{ Vdc}; V_{CC} = 50 \text{ Vdc}; I_C = 3.5 \text{ Adc}; L = 60 \text{ mH}; R = 3 \Omega;$	$R_{L} \leq 14\Omega.$			
Test 2				
t_P = approximately 3 ms (vary to obtain I_{C} ; R_{BB1} = 100 Ω ; V_{BB1} = 1	0 Vdc; $R_{BB2} = 3 k\Omega$;			
$r_{\rm P}$ = approximately 5 ms (var) to obtain 10), $r_{\rm BB1}$ = 100 32, $v_{\rm BB1}$ = 1	$R_{L} \leq 83\Omega$.			
$V_{BB2} = 1.5 \text{ Vdc}; I_C = 0.6 \text{ Adc } V_{CC} = 50 \text{ Vdc}; L = 200 \text{ mH}; R = 8 \Omega;$				
V_{BB2} = 1.5 Vdc; I_C = 0.6 Adc V_{CC} = 50 Vdc; L = 200 mH; R = 8 Ω ; Switching Tests				
$\label{eq:VBB2} \begin{split} V_{BB2} &= 1.5 \ \text{Vdc}; \ I_C = 0.6 \ \text{Adc} \ V_{CC} = 50 \ \text{Vdc}; \ L = 200 \ \text{mH}; \ R = 8 \ \Omega; \\ \textbf{Switching Tests} \\ \textbf{Load condition (clamped inductive load)} \end{split}$				
V_{BB2} = 1.5 Vdc; I_C = 0.6 Adc V_{CC} = 50 Vdc; L = 200 mH; R = 8 Ω ; Switching Tests)/371)			
$\label{eq:VBB2} \begin{split} V_{BB2} &= 1.5 \ \text{Vdc}; \ I_C = 0.6 \ \text{Adc} \ V_{CC} = 50 \ \text{Vdc}; \ L = 200 \ \text{mH}; \ R = 8 \ \Omega; \\ \textbf{Switching Tests} \\ \textbf{Load condition (clamped inductive load)} \end{split}$	0/371)			
$\begin{split} V_{BB2} &= 1.5 \text{ Vdc}; I_{C} = 0.6 \text{ Adc } V_{CC} = 50 \text{ Vdc}; L = 200 \text{ mH}; R = 8 \Omega; \\ \textbf{Switching Tests} \\ \textbf{Load condition (clamped inductive load)} \\ T_{C} &= +25^{0}\text{C}; \text{ duty cycle} \leq 10\%. (\text{See Figure 5 of MIL-PRF-19500}) \end{split}$		$R_{BB2} = 100$ s	Ω;	
$\begin{split} V_{BB2} &= 1.5 \text{ Vdc}; \text{ I}_{C} = 0.6 \text{ Adc } V_{CC} = 50 \text{ Vdc}; \text{ L} = 200 \text{ mH}; \text{ R} = 8 \ \Omega; \\ \textbf{Switching Tests} \\ \textbf{Load condition (clamped inductive load)} \\ T_{C} &= +25^{0}\text{C}; \text{ duty cycle} \leq 10\%. (\text{See Figure 5 of MIL-PRF-19500}) \\ \textbf{Test 1} \end{split}$	$Ω; V_{BB1} = 10 Vdc; H$	$R_{\rm BB2} = 100 \ s$	Ω;	
$\begin{split} V_{BB2} &= 1.5 \text{ Vdc}; \ I_C = 0.6 \text{ Adc } V_{CC} = 50 \text{ Vdc}; \ L = 200 \text{ mH}; \ R = 8 \ \Omega; \\ \textbf{Switching Tests} \\ \textbf{Load condition (clamped inductive load)} \\ T_C &= +25^0 \text{C}; \ \text{duty cycle} \leq 10\%. (\text{See Figure 5 of MIL-PRF-19500}) \\ \textbf{Test 1} \\ t_P &= \text{approximately 30 ms (vary to obtain I_C); } \\ R_S &= 0.1 \ \Omega; \ R_{BB1} = 20 \end{split}$	$Ω; V_{BB1} = 10 Vdc; H$	$R_{BB2} = 100 \ s$	Ω;	
$\begin{split} &V_{BB2} = 1.5 \ Vdc; \ I_C = 0.6 \ Adc \ V_{CC} = 50 \ Vdc; \ L = 200 \ mH; \ R = 8 \ \Omega; \\ &\textbf{Switching Tests} \\ &\textbf{Load condition (clamped inductive load)} \\ &T_C = +25^0 C; \ duty \ cycle \leq 10\%. (See \ Figure 5 \ of \ MIL-PRF-19500) \\ &\textbf{Test 1} \\ &t_P = approximately \ 30 \ ms \ (vary \ to \ obtain \ I_C); \ R_S = 0.1 \ \Omega; \ R_{BB1} = 20 \\ &V_{BB2} = 1.5 \ Vdc; \ V_{CC} = 50 \ Vdc; \ I_C = 3.5 \ Adc; \ L = 60 \ mH; \ R = 3 \ \Omega; \end{split}$	$Ω; V_{BB1} = 10 Vdc; H$	$R_{\rm BB2} = 100 \ g$	Ω;	
$\begin{split} &V_{BB2} = 1.5 \ \text{Vdc}; \ I_C = 0.6 \ \text{Adc} \ V_{CC} = 50 \ \text{Vdc}; \ L = 200 \ \text{mH}; \ R = 8 \ \Omega; \\ &\textbf{Switching Tests} \\ &\textbf{Load condition (clamped inductive load)} \\ &T_C = +25^0 \text{C}; \ \text{duty cycle} \leq 10\%. (\text{See Figure 5 of MIL-PRF-19500}) \\ &\textbf{Test 1} \\ &t_P = \text{approximately 30 ms (vary to obtain I_C); } \\ &R_S = 0.1 \ \Omega; \ R_{BB1} = 20 \\ &V_{BB2} = 1.5 \ \text{Vdc}; \ V_{CC} = 50 \ \text{Vdc}; \ I_C = 3.5 \ \text{Adc}; \ L = 60 \ \text{mH}; \ R = 3 \ \Omega; \\ &(\text{A suitable clamping circuit or diode can be used.)} \end{split}$	$Ω; V_{BB1} = 10 Vdc; H$	R _{BB2} = 100 \$	Ω;	
$\begin{split} &V_{BB2} = 1.5 \ \text{Vdc}; \ I_C = 0.6 \ \text{Adc} \ V_{CC} = 50 \ \text{Vdc}; \ L = 200 \ \text{mH}; \ R = 8 \ \Omega; \\ &\textbf{Switching Tests} \\ &\textbf{Load condition (clamped inductive load)} \\ &T_C = +25^0 \text{C}; \ \text{duty cycle} \leq 10\%. (\text{See Figure 5 of MIL-PRF-19500}) \\ &\textbf{Test 1} \\ &t_P = \text{approximately 30 ms (vary to obtain I_C); } \\ &R_S = 0.1 \ \Omega; \ R_{BB1} = 20 \\ &V_{BB2} = 1.5 \ \text{Vdc}; \ V_{CC} = 50 \ \text{Vdc}; \ I_C = 3.5 \ \text{Adc}; \ L = 60 \ \text{mH}; \ R = 3 \ \Omega; \\ &(\text{A suitable clamping circuit or diode can be used.)} \\ &Clamp \ \text{Voltage} = 400 + 0, -5 \ \text{Vdc} \qquad 2N3902 \end{split}$	$Ω; V_{BB1} = 10 Vdc; H$	R _{BB2} = 100 s	Ω;	
$ \begin{array}{l} V_{BB2} = 1.5 \ \text{Vdc}; \ I_C = 0.6 \ \text{Adc} \ V_{CC} = 50 \ \text{Vdc}; \ L = 200 \ \text{mH}; \ R = 8 \ \Omega; \\ \textbf{Switching Tests} \\ \textbf{Load condition (clamped inductive load)} \\ T_C = +25^0 \text{C}; \ \text{duty cycle} \leq 10\%. (\text{See Figure 5 of MIL-PRF-19500}) \\ \textbf{Test 1} \\ t_P = \text{approximately 30 ms (vary to obtain I_C)}; \ R_S = 0.1 \ \Omega; \ R_{BB1} = 20 \\ V_{BB2} = 1.5 \ \text{Vdc}; \ V_{CC} = 50 \ \text{Vdc}; \ I_C = 3.5 \ \text{Adc}; \ L = 60 \ \text{mH}; \ R = 3 \ \Omega; \\ (\text{A suitable clamping circuit or diode can be used.)} \\ \text{Clamp Voltage = 400 + 0, -5 \ Vdc} \qquad 2N3902 \\ \text{Clamp Voltage = 500 + 0, -5 \ Vdc} \qquad 2N5157 \\ \end{array} $	$Ω; V_{BB1} = 10 Vdc; H$	R _{BB2} = 100 s	Ω;	

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803