imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

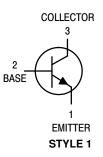
2N3903 is a Preferred Device

General Purpose Transistors

NPN Silicon

Features

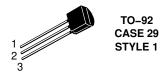
• Pb–Free Package May be Available. The G–Suffix Denotes a Pb–Free Lead Finish

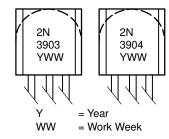

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	83.3	°C/W


1. Indicates Data in addition to JEDEC Requirements.



ON Semiconductor®

http://onsemi.com

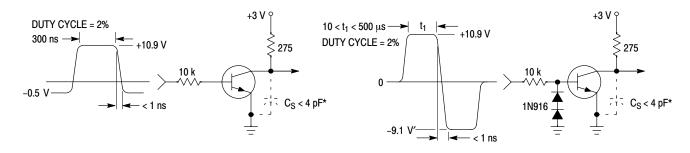
MARKING DIAGRAMS

ORDERING INFORMATION

Device	Package	Shipping [†]
2N3903	TO-92	5000 Units/Box
2N3903RLRM	TO-92	2000/Ammo Pack
2N3904	TO-92	5000 Units/Box
2N3904RLRA	TO-92	2000/Tape & Reel
2N3904RLRE	TO-92	2000/Tape & Reel
2N3904RLRM	TO-92	2000/Ammo Pack
2N3904RLRMG	TO-92	2000/Ammo Pack
2N3904RLRP	TO-92	2000/Ammo Pack
2N3904RL1	TO-92	2000/Tape & Reel
2N3904ZL1	TO-92	2000/Ammo Pack

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

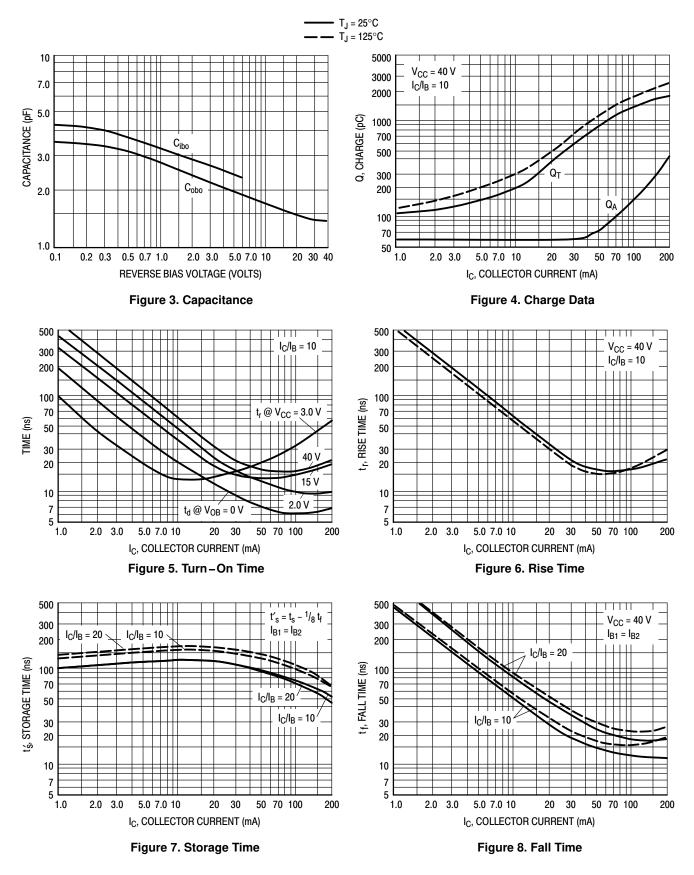
*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

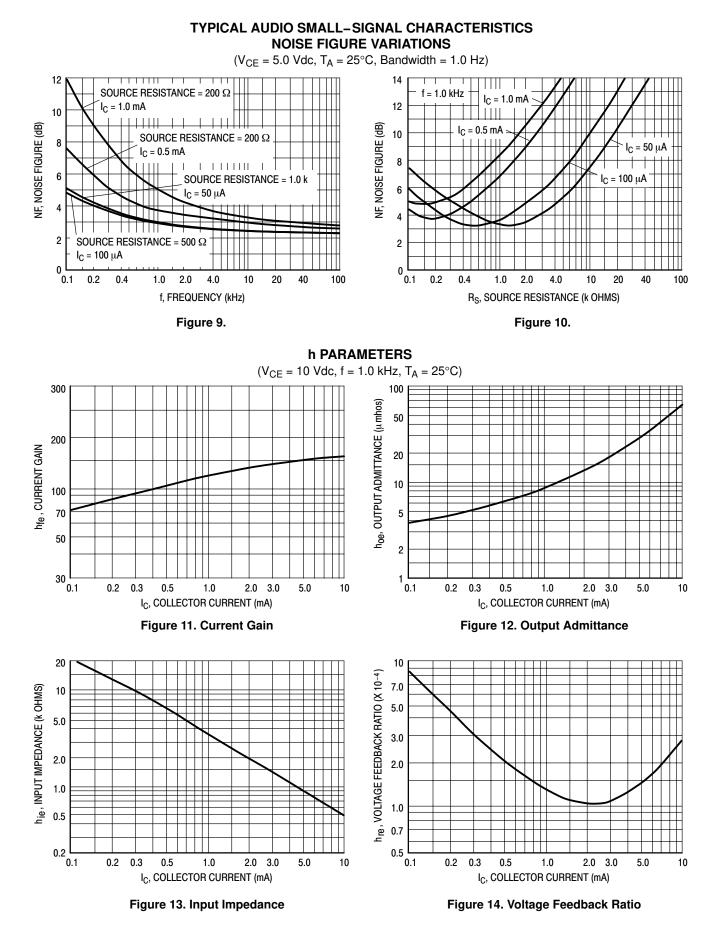

 $\ensuremath{\textbf{Preferred}}$ devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

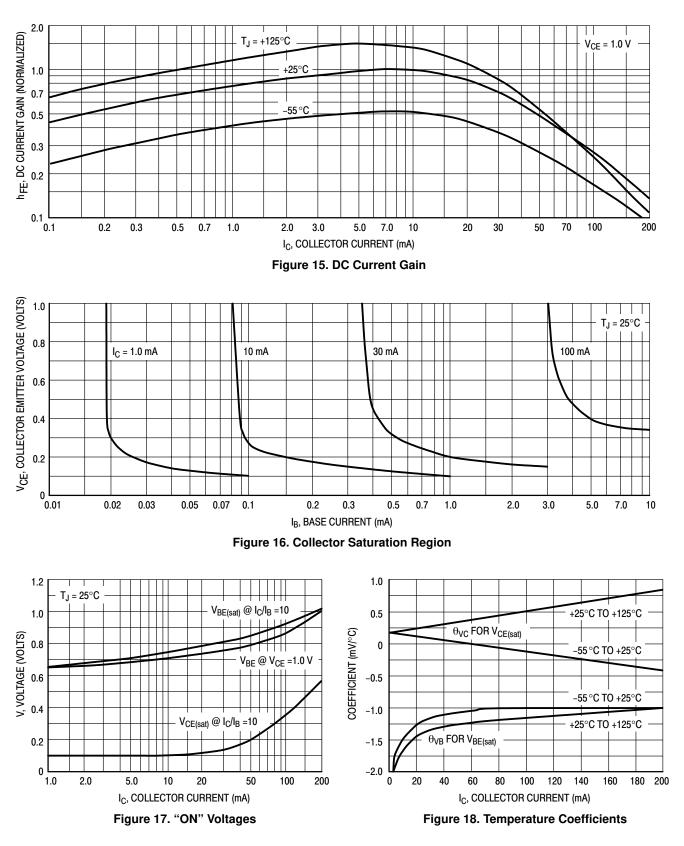
Characteristic			Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 2) ($I_c = 1.0 \text{ mAdc}, I_B = 0$)			40	-	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)		V _{(BR)CBO}	60	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C = 0$)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	-	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{CEX}	-	50	nAdc
ON CHARACTERISTICS				1	
DC Current Gain (Note 2) (I _C = 0.1 mAdc, V _{CE} = 1.0 Vdc)	2N3903	h _{FE}	20	_	-
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3904 2N3903 2N3904		40 35 70		
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3904 2N3903 2N3904		50 100	150 300	
$(I_{C} = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3904 2N3903 2N3904		30 60		
$(I_{C} = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3903 2N3904		15 30		
Collector – Emitter Saturation Voltage (Note 2) ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$		V _{CE(sat)}	-	0.2 0.3	Vdc
Base – Emitter Saturation Voltage (Note 2) ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)		V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS					÷
Current-Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$)	2N3903 2N3904	fT	250 300		MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
Input Impedance $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10
Small–Signal Current Gain 2N3903 (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) 2N3903 2N3904 2N3904		h _{fe}	50 100	200 400	-
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)	2N3903 2N3904	NF	-	6.0 5.0	dB
SWITCHING CHARACTERISTICS					
Delay Time $(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc}.)$		t _d	-	35	ns

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc},$		t _d	-	35	ns
Rise Time	$I_{\rm C} = 10 \text{ mAdc}, I_{\rm B1} = 1.0 \text{ mAdc})$		t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _s	-	175 200	ns
Fall Time			t _f	-	50	ns

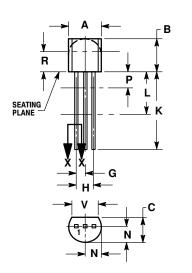

2. Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2%.



* Total shunt capacitance of test jig and connectors


Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS



TYPICAL STATIC CHARACTERISTICS

PACKAGE DIMENSIONS

TO-92 **TO-226AA** CASE 29-11 **ISSUE AL**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Ρ		0.100		2.54
R	0.115		2.93	
۷	0.135		3.43	

STYLE 1:		STYLE 14:	
PIN 1.	EMITTER	PIN 1.	EMITTER
2.	BASE	2.	COLLECTOR
3.	COLLECTOR	3.	BASE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in solut. C and the set and/or specifications can and do vary in different applications of there. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.