

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

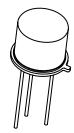
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

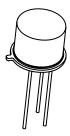
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com


NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/727


DEVICES				LEVELS
2N5010	2N5013	2N5010S	2N5013S	JAN
2N5011	2N5014	2N5011S	2N5014S	JANTX
2N5012	2N5015	2N5012S	2N5015S	IANTXV

ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	s	Symbol	Value	Unit
Collector-Emitter Voltage 2N5010			500	Vdc
	2N5011		600	Vdc
	2N5012	V	700	Vdc
	2N5013	V_{CER}	800	Vdc
	2N5014		900	Vdc
	2N5015		1000	Vdc
Collector-Base Voltage	2N5010		500	Vdc
	2N5011		600	Vdc
	2N5012	W	700	Vdc
	2N5013	V_{CBO}	800	Vdc
	2N5014		900	Vdc
	2N5015		1000	Vdc
Emitter-Base Voltage		V_{EBO}	5	Vdc
Collector Current		I_{C}	200	mAdc
Base Current		I_{B}	20	mAdc
Total Power Dissipation	@ T _A = +25°C @ T _C = +25° C	P _t	1.0 7.0	W
Thermal Resistance, Junction	to Case 1/	$R_{ heta JC}$	20	°C/W
Operating & Storage Junction	T_j, T_{stg}	-65 to +200	°C	

TO-5 2N5010 thru 2N5015

TO-39 2N5010S thru 2N5015S

Note

1/ See 19500/727 for Thermal Derating Curves.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

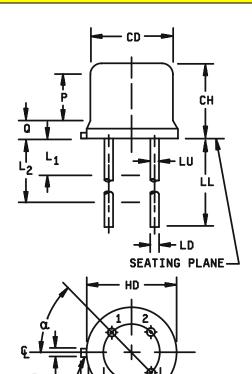
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector to Base Cutoff Current					
$V_{CB} = 400V$	2N5010			10	nAdc
$V_{CB} = 500V$	2N5011			10	nAdc
$V_{CB} = 580V$	2N5012	I_{CBO1}		10	nAdc
$V_{CB} = 650V$	2N5013	1CBO1		10	nAdc
$V_{CB} = 700V$	2N5014			10	nAdc
$V_{CB} = 760V$	2N5015			10	nAdc
	@ $T_A = +150^{\circ}C$				
$V_{CB} = 400V$	2N5010			10	uAdc
$V_{CB} = 500V$	2N5011			10	uAdc
$V_{CB} = 588V$	2N5012	I_{CBO2}		10	uAdc
$V_{CB} = 650V$	2N5013	6562		10	uAdc
$V_{CB} = 700V$	2N5014			10	uAdc
$V_{CB} = 760V$	2N5015			10	uAdc
Emitter to Base Cutoff Current					
$V_{EB} = 4V$		I_{EBO}		20	uAdc
Collector to Base Breakdown Voltage					
$I_C = 0.1 \text{mAdc}$	2N5010		500		Vdc
$I_C = 0.1 \text{mAdc}$	2N5011		600		Vdc
$I_C = 0.1 \text{mAdc}$	2N5012	V _{(BR)CBO}	700		Vdc
$I_C = 0.2 \text{mAdc}$	2N5013	▼ (BR)CBO	800		Vdc
$I_C = 0.2 \text{mAdc}$	2N5014		900		Vdc
$I_C = 0.2$ mAdc	2N5015		1000		Vdc
Emitter to Base Breakdown Voltage					
$I_C = 0 \text{mA}$		$V_{(BR)EBO}$	5		Vdc
$I_{\rm E} = 0.05 \text{mA}$		(=1)=1			
Collector to Emitter Breakdown Voltage					
$R_{BE} = 1K\Omega$	2N5010		500		Vdc
$I_C = 0.2 \text{mA}$, Pulsed	2N5011		600		Vdc
	2N5012	$V_{(BR)CER}$	700		Vdc
	2N5013		800		Vdc
	2N5014		900		Vdc
	2N5015		1000		Vdc
Forward-Current Transfer Ratio					
$I_C = 25 \text{mA}$	2N5010, 2N5011, 2N5012	h	30	180	
$I_C = 20 \text{mA}$	2N5013, 2N5014, 2N5015	$h_{\mathrm{FE}1}$	30	180	
$V_{CE} = 10V$					
$V_{CE} = 10V$		h-	10		
$I_C = 5mA$		h _{FE2}	10		
$V_{CE} = 10V$	@ T _ 550C	h	10		
$I_C = 20 \text{mA}$	@ $T_A = -55^{\circ}C$	h_{FE3}	10		

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted) (Cont.)

Parameters / Test Conditions			Min.	Max.	Unit
$\begin{aligned} & \text{Base-Emitter Saturation Voltage} \\ & I_C = 25\text{mA} \\ & I_C = 20\text{mA} \\ & I_B = 5\text{mA}, \text{Pulsed} \end{aligned}$	2N5010, 2N5011, 2N5012 2N5013, 2N5014, 2N5015	V _{BE(SAT)}		1.0 1.0	Vdc Vdc
Collector-Emitter Saturation Voltage $I_C = 25mA$ $I_C = 25mA$ $I_C = 25mA$ $I_C = 20mA$ $I_C = 20mA$ $I_C = 20mA$ $I_C = 5mA$ $I_C = 20mA$ $I_C = 5mA$ $I_C = 20mA$ $I_C = 5mA$ $I_C = 5mA$	2N5010 2N5011 2N5012 2N5013 2N5014 2N5015	V _{CE(SAT)}		1.4 1.5 1.6 1.6 1.6 1.8	Vde Vde Vde Vde Vde Vde

DYNAMIC CHARACTERISTICS


Parameters / Test Conditions	Symbol	Min.	Max.	Unit
$\begin{aligned} &\text{Magnitude of small signal short-circuit forward current transfer ratio} \\ &V_{\text{CE}} = 10 \text{Vdc}, \ I_{\text{C}} = 25 \text{mA}, \ f = 10 \text{MHz} \\ &V_{\text{CE}} = 10 \text{Vdc}, \ I_{\text{C}} = 20 \text{mA}, \ f = 10 \text{MHz} \end{aligned} \qquad \begin{aligned} &2 \text{N} 5010, \ 2 \text{N} 5011, \ 2 \text{N} 5012 \\ &2 \text{N} 5013, \ 2 \text{N} 5014, \ 2 \text{N} 5015 \end{aligned}$		1.0 1.0		
Open circuit output capacitance $V_{CB} = 10V, I_E = 0, f = 2MHz$	$C_{ m obo}$		30	pF

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

PACKAGE DIMENSIONS

Symbol	Inc	hes	Millimeters		Notes	
	Min	Max	Min	Max		
CD	.305	.335	7.75	8.51	6	
CH	.240	.260	6.10	6.60		
HD	.335	.370	8.51	9.40		
LC	.200) TP	5.0	8 TP	7	
LD	.016	.019	0.41	0.48	8,9	
LL			See note	14		
LU	.016	.019	0.41	0.48	8,9	
L ₁		.050		1.27	8,9	
L ₂	.250		6.35		8,9	
P	.100		2.54		7	
Q		.030		0.76	5	
TL	.029	.045	0.74	1.14	3,4	
TW	.028	.034	0.71	0.86	3	
r		.010		0.25	10	
α	45° TP		45° TP		7	
	1, 2, 10, 12, 13, 14					

NOTE:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 7. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods or by gauging procedure.
- 8. Dimension LU applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Diameter is uncontrolled in and beyond LL minimum.
- 9. All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.
- 14. For non-S-suffix devices (TO-5), dimension LL = 1.5 inches (38.10 mm) min. and 1.75 inches (44.45 mm) max. For S-suffix types (TO-39), dimension LL = .5 inch (12.70 mm) min. and .750 inch (19.05 mm) max.