mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

P-CHANNEL J-FET

DESCRIPTION

This low-profile surface mount device is available in military equivalents for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent to JEDEC registered 2N5114 thru 2N5116 series.
- Low-profile ceramic surface mount package.
- Screening in reference to MIL-PRF-19500 is available. (See part nomenclature.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Low-profile UB package.
- Lightweight.

MAXIMUM RATINGS $@T_c = +25^{\circ}C$ unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	$T_{\rm J}$ and $T_{\rm STG}$	-65 to +200	°C
Gate-Source Voltage (1)	V _{GS}	30	V
Drain-Source Voltage	V _{DS}	30	V
Drain-Gate Voltage (1)	V _{DG}	30	V
Gate Current	lg	50	mA
Steady-State Power Dissipation @ $T_A = +25 {}^{\circ}C {}^{(2)}$	PD	0.500	W

Notes: 1. Symmetrical geometry allows operation of those units with source / drain leads interchanged. 2. Derate linearly 3.0 mW/°C for $T_A > +25$ °C. Screening in reference to MIL-PRF-19500 available

UB Package

Also available in:

TO-18 package (leaded) 2N5114 - 2N5116

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold Plating over Nickel underplate. RoHS compliant Matte/Tin available on commercial grade only.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

ELECTRICAL CHARACTERISTICS $@T_A = +25^\circ C$ unless otherwise noted.

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate-Source Breakdown Voltage $V_{DS} = 0, I_G = 1.0 \ \mu A$		$V_{(BR)GSS}$	30		V
Drain-Source "On" State Voltage $V_{GS} = 0 V$, $I_D = -15 mA$ $V_{GS} = 0 V$, $I_D = -7.0 mA$ $V_{GS} = 0 V$, $I_D = -3.0 mA$	2N5114UB 2N5115UB 2N5116UB	$V_{\text{DS(on)}}$		-1.3 -0.8 -0.6	V
Gate Reverse Current $V_{DS} = 0, V_{GS} = 20 V$		I _{GSS}		500	pА
$ \begin{array}{l} \text{Drain Current Cutoff} \\ V_{GS} = 12 \text{ V}, V_{DS} = -15 \text{ V} \\ V_{GS} = 7.0 \text{ V}, V_{DS} = -15 \text{ V} \\ V_{GS} = 5.0 \text{ V}, V_{DS} = -15 \text{ V} \end{array} $	2N5114UB 2N5115UB 2N5116UB	I _{D(off)}		-500 -500 -500	pА
Zero Gate Voltage Drain Current $V_{GS} = 0$, $V_{DS} = -18V$ $V_{GS} = 0$, $V_{DS} = -15V$ $V_{GS} = 0$, $V_{DS} = -15V$	2N5114UB 2N5115UB 2N5116UB	I _{DSS}	-30 -15 -5.0	-90 -60 -25	mA
Gate-Source Cutoff $V_{DS} = -15$, $I_D = -1.0$ nA $V_{DS} = -15$, $I_D = -1.0$ nA $V_{DS} = -15$, $I_D = -1.0$ nA	2N5114UB 2N5115UB 2N5116UB	$V_{\text{GS(off)}}$	5.0 3.0 1.0	10 6.0 4.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Small-Signal Drain-Source "On" State Resistance					
$V_{GS} = 0, I_D = -1.0 \text{ mA}$	2N5114UB 2N5115UB 2N5116UB	r _{ds(on)1}		75 100 175	Ω
Small-Signal Drain-Source "On" State Resistance					•
$V_{GS} = 0, I_D = 0; f = 1 \text{ kHz}$	2N5114UB 2N5115UB 2N5116UB	r _{ds(on)2}		75 100 175	Ω
Small-Signal, Common-Source Short-Circuit					
Reverse Transfer Capacitance $V_{GS} = 12 \text{ V}, V_{DS} = 0$ $V_{GS} = 7.0 \text{ V}, V_{DS} = 0$ $V_{GS} = 5.0 \text{ V}, V_{DS} = 0$	2N5114UB 2N5115UB 2N5116UB	C _{rss}		7.0	pF
$\label{eq:small-Signal, Common-Source Short-Circuit Input C} $V_{GS} = 0, V_{DS} = -15 \ V, \ f = 1.0 \ MHz $$2N5114U$$	apacitance B, 2N5115UB 2N5116UB	C _{iss}		25 27	pF

ELECTRICAL CHARACTERISTICS @ $T_A = +25^{\circ}C$ unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-On Delay Time	2N5114UB	T _{d(on)}		6	ηs
	2N5115UB			10	
	2N5116UB			25	
Rise Time	2N5114UB	tr		10	ηs
	2N5115UB	ļ		20	
	2N5116UB			35	
Turn-Off Delay Time	2N5114UB	Td(off)		6	ηs
	2N5115UB			8	
	2N5116UB			20	

PACKAGE DIMENSIONS

	Dimensions					Dimensions					
Symbol	inch		millimeters		Note Sy	Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	.046	.056	1.17	1.42		LS1	.036	.040	0.91	1.02	
BL	.115	.128	2.92	3.25		LS2	.071	.079	1.81	2.01	
BW	.085	.108	2.16	2.74		LW	0.16	0.24	0.41	0.61	
CL		.128		3.25		r		.008		.203	
CW		.108		2.74		r1		.012		.305	
LL1	.022	.038	0.56	0.97		r2		.022		.559	
LL2	.017	.035	0.43	0.89							

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas (tungsten with gold plating 60 micro inches minimum over 80 micro inches minimum nickel).
- 4. Pad 1 = drain, Pad 2 = source, Pad 3 = gate, Pad 4 = shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.