

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

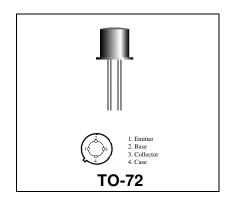
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013


PHONE: (215) 631-9840 FAX: (215) 631-9855

2N5179

RF & MICROWAVE DISCRETE LOW POWER TRANSISTORS

Features

- Silicon NPN, TO-72 packaged VHF/UHF Transistor
- Low Noise, NF = 4.5 dB (max) @ 200 MHz
- High Current-Gain-Bandwidth Product 1.4 Ghz (typ) @ 10 mAdc
- Characterized with S-Parameters

DESCRIPTION:

The 2N5179 is a Silicon NPN transistor, designed for VHF and UHF equipment. It is ideal for pre-driver, low noise amplifier, and oscillator applications.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	12	Vdc
V _{CBO}	Collector-Base Voltage	20	Vdc
V _{EBO}	Emitter-Base Voltage	2.5	Vdc
Ic	Collector Current	50	mA

Thermal Data

P _D	Total Device Dissipation @ T _A = 25°C	300	mW mW/ °C
	Derate above 25°C	1.71	mW/ ºC

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

STATIC

(off)

Symbol	Test Conditions	Value		Unit	
Syllibol	rest Conditions	Min.	Тур.	Max.	Unit
BVCEO	Collector-Emitter Sustaining Voltage (IC = 3.0 mAdc, IB = 0)	12	-	-	Vdc
BVCBO	Collector-Base Breakdown Voltage (IC=1.0 Adc, IE=0)	20	-	-	Vdc
BVEBO	Emitter Base Breakdown Voltage (IE = 0.01 mAdc, IC = 0)	2.5	-	-	Vdc
ICBO	Collector Cutoff Current (VCB = 15 Vdc, IE = 0)	-	-	.02	mA

(on)

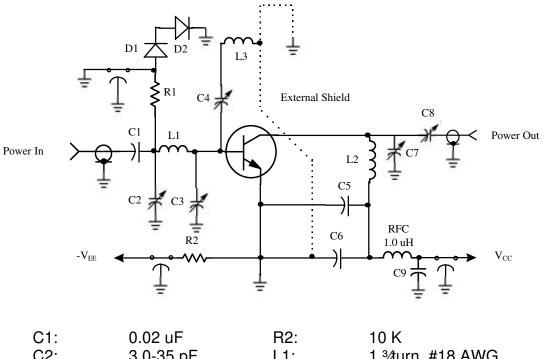
HFE	DC Current Gain				
	(IC = 3.0 mAdc, VCE = 1.0 Vdc)	25	-	250	-
VBE(sat)	Base-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc)	-	-	1.0	Vdc
VCE(sat)	Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc)	-	-	0.4	Vdc

DYNAMIC

Symbol	Test Conditions	Tost Conditions V			Unit	
Symbol	rest conditions	Min.	Тур.	Max.	Offic	
f _⊤	Current-Gain - Bandwidth Product (IC = 5.0 mAdc, VCE = 6 Vdc, f = 100 MHz)	900	1500	-	MHz	
ССВ	Collector-base Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz)	-	-	1.0	pF	

FUNCTIONAL

Symbol	Test Conditions			Value		
Symbol	lest Co	illultions	Min.	Тур.	Max.	Unit
NF	Noise Figure (figure 1)	IC = 1.5 mAdc, VCE = 6.0 Vdc, f = 200 MHz	-	-	4.5	dB
GPE	Common-Emitter Amplifier Power Gain (figure 1)	IC = 1.5 mAdc, VCE = 6.0 Vdc, f = 200 MHz	20	-	-	dB



FUNCTIONAL (CONT)

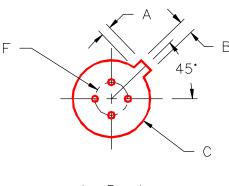
Symbol	Tost Co	nditions	Value		Unit	
Syllibol	Test Co	Haltions	Min.	Тур.	Max.	Ollit
GUMAX	Maximum Unilateral Gain (1)	IC = 5 mAdc, VCE = 6.0 Vdc, f = 200 MHz	-	17	-	dB
MAG	Maximum Available Gain	IC = 5 mAdc, VCE = 6.0 Vdc, f = 200 MHz	-	18	-	dB
$ S_{21} ^2$	Insertion Gain	IC = 5 mAdc, VCE = 6.0 Vdc, f = 200 MHz	-	12	-	dB

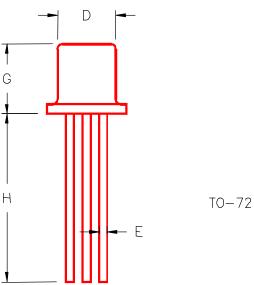
Note: 1. Maximum Unilateral Gain = $|^{S}21|^{2}$ / $(1 - |^{S}11|^{2})(1 - |^{S}22|^{2})$

TEST CIRCUIT SCHEMATIC

C1:	0.02 uF	R2:	10 K
C2:	3.0-35 pF	L1:	1 ¾urn, #18 AWG
C3, C7, C	8: 2.0-10 pF		0.5" L, 0.5" Dia.
C4:	1.0-5.0 pF	L2:	2 turn, #16 AWG
C5, C9:	0.1 uF		0.5" L, 0.5" Dia.
C6:	0.001 uF	L3:	2 turn, #13 AWG
Cbypass:	1200 pF		0.25" L, 0.5" Dia. Position 1/4"
R1:	91 ohm		from L2

Figure 1. 200 MHz Amplifier for Power Gain and Noise Figure specifications.




Table 1. Common Emitter S-Parameters, @ VCE = 6 V, IC = 5 mA

f	S 11	1	S21		S12	2	S2	2
(MHz)	S11	∠ φ	S21	∠ φ	S12	∠ φ	S22	∠ ф
100	.471	-90	6.78	122	.023	64	.844	-51
200	.314	-145	4.20	100	.034	58	.780	-93
300	.230	156	2.76	91	.043	65	.768	-134
400	.171	108	2.17	86	.056	63	.756	-177
500	.168	54	1.86	79	.062	62	.741	140
600	.149	-9	1.53	71	.069	66	.740	98
700	.137	-72	1.31	67	.073	71	.739	54
800	.119	-129	1.18	64	.092	74	.744	8
900	.153	-174	1.13	58	.101	68	.742	-38
1000	.171	122	.979	49	.106	71	.749	-82

PACKAGE STYLE M244

	MINIMUM	MAXIMUM		MINIMUM	MAXIMUM
	INCHES/MM	INCHES/MM		INCHES/MM	INCHES/MM
Α	.020/0,51	.048/1,22			
В	.036/0,91	.046/1,17			
С	.209/5,31	.230/5,84			
D	.178/4,52	.195/4,95			
Е	.016/0,41	.020/0,51			
F	.100/	/2,54			
G	.170/4,32	.210/5,33			
Н	.500/	12,70			