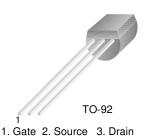
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-Channel RF Amplifier

- This device is designed for HF/VHF mixer/amplifier and applications where process 50is not adequate. Sufficient gain and low noise for sensitive receivers.
- Sourced from process 90.

Absolute Maximum Ratings* $T_a=25$ °C unless otherwise noted

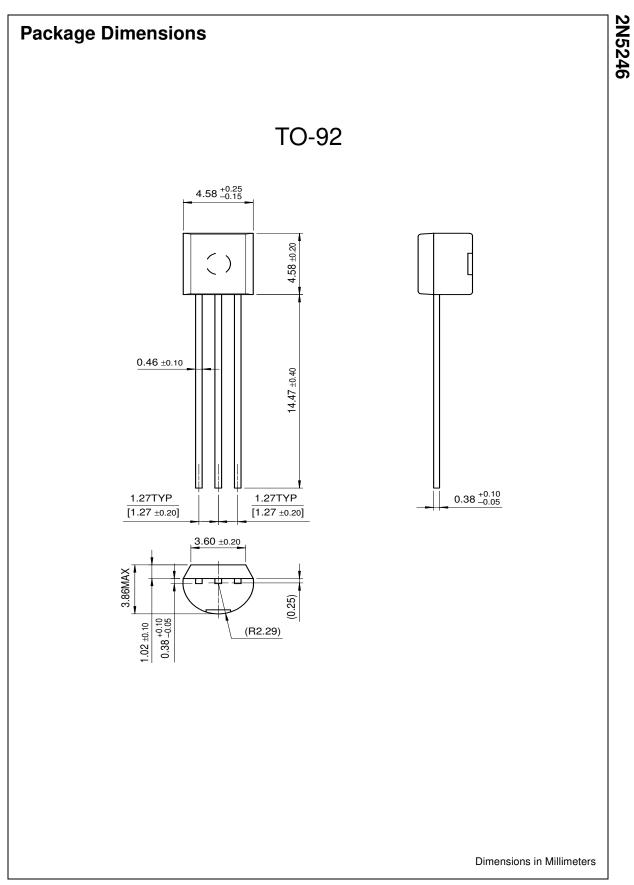
Symbol	Parameter	Ratings	Units
V _{DG}	Drain-Gate Voltage	30	V
V _{GS}	Gate-Source Voltage	-30	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 ~ 150	°C

* This ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These rating are based on a maximum junction temperature of 150 degrees C.
2) These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics Ta=25°C unless otherwise noted


Parameter	Test Condition	Min.	Max.	Units
teristics				
Gate-Source Breakdwon Voltage	$I_{G} = 1.0 \mu A, V_{DS} = 0$	-30		V
Gate Reverse Current	$V_{GS} = 25V, V_{DS} = 0$		-1.0	nA
Gate-Source Cutoff Voltage	V _{DS} = 15V, I _D = 1.0nA	-0.5	-4.0	V
teristics				
Zero-Gate Voltage Drain Current *	$V_{DS} = 15V, V_{GS} = 0$	1.5	7.0	mA
al Characteristics		•	•	•
Forward Transferconductance	$V_{GS} = 0V, V_{DS} = 15V, f = 1.0kHz$	3000	9500	μmhos
Common- Source Output Conductance	V _{GS} = 0V, V _{DS} = 15V, f = 1.0kHz		50	μmhos
	cteristics Gate-Source Breakdwon Voltage Gate Reverse Current Gate-Source Cutoff Voltage cteristics Zero-Gate Voltage Drain Current * nal Characteristics Forward Transferconductance	teristicsGate-Source Breakdwon Voltage $I_G = 1.0\mu A, V_{DS} = 0$ Gate Reverse Current $V_{GS} = 25V, V_{DS} = 0$ Gate-Source Cutoff Voltage $V_{DS} = 15V, I_D = 1.0nA$ teristicsZero-Gate Voltage Drain Current *VDS = 15V, VGS = 0al CharacteristicsForward Transferconductance $V_{GS} = 0V, V_{DS} = 15V, f = 1.0kHz$	teristicsGate-Source Breakdwon Voltage $I_G = 1.0 \mu A, V_{DS} = 0$ -30Gate Reverse Current $V_{GS} = 25V, V_{DS} = 0$ -30Gate-Source Cutoff Voltage $V_{DS} = 15V, I_D = 1.0nA$ -0.5teristicsZero-Gate Voltage Drain Current * $V_{DS} = 15V, V_{GS} = 0$ 1.5Tail CharacteristicsForward Transferconductance $V_{GS} = 0V, V_{DS} = 15V, f = 1.0kHz$ 3000	teristicsGate-Source Breakdwon Voltage $I_G = 1.0\mu A$, $V_{DS} = 0$ -30Gate Reverse Current $V_{GS} = 25V$, $V_{DS} = 0$ -1.0Gate-Source Cutoff Voltage $V_{DS} = 15V$, $I_D = 1.0nA$ -0.5-4.0teristicsZero-Gate Voltage Drain Current * $V_{DS} = 15V$, $V_{GS} = 0$ 1.57.0teristicsForward Transferconductance $V_{GS} = 0V$, $V_{DS} = 15V$, $f = 1.0kHz$ 30009500

Pulse Test: Pulse $\leq 300 \mu s$

Thermal Characteristics TA=25°C unless otherwise noted

Symbol	Parameter	Max.	Units
PD	Total Device Dissipation	350	mW
	Derate above 25°C	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	357	°C/W

2N5246

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ActiveArrayF.BottomlessF.CoolFETF. $CoolFET$ F. $CROSSVOLT$ G.DOMEG.EcoSPARKH.E²CMOSI²EnSignaInFACTISAcross the board. Ar		LittleFET™ MICROCOUPLER™ MicroFET™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OCXPro™ OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	Power247 [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] SILENT SWITCHER [®] SMART START [™] SPM [™] Stealth [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UltraFET [®] VCX [™]
The Power Franchise Programmable Active	e™		•	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.