

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TECHNICAL DATA

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/466

Devices Qualified Level

2N5683 2N5684

JAN JANTX JANTXV

MAXIMUM RATINGS

Ratings	Symbol	2N5683	2N5684	Unit
Collector-Emitter Voltage	V_{CEO}	60	80	Vdc
Collector-Base Voltage	V_{CBO}	60	80	Vdc
Emitter-Base Voltage	V_{EBO}	5.0		Vdc
Base Current	I_B	15		Adc
Collector Current	I_{C}	5	0	Adc
Total Power Dissipation $^{(1)}$ @ $T_C = 25^0$ C	D	300		W
$^{\circ}$	P_{T}	17	71	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		^{0}C

THERMAL CHARACTERISTICS

THE WINE CHARGE LEADING			
Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.584	⁰ C/W

¹⁾ Derate linearly 1.715 W/ $^{\circ}$ C between $T_C = +25^{\circ}$ C and $T_C = +200^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted)

Characterist	ics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 200 \text{ mAdc}$	2N5683	$V_{(BR)CEO}$	60		Vdc
	2N5684		80		
Collector-Emitter Cutoff Current					
$V_{CE} = 30 \text{ Vdc}$	2N5683	I_{CEO}		5.0	μAdc
$V_{CE} = 40 \text{ Vdc}$	2N5684			5.0	
Collector-Emitter Cutoff Current					
$V_{CE} = 60 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5683	I_{CEX}		5.0	μAdc
$V_{CE} = 80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N5684			5.0	
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ Vdc}$	2N5683	I_{CBO}		5.0	μAdc
$V_{CB} = 80 \text{ Vdc}$	2N5684			5.0	
Emitter-Base Cutoff Current		т		5.0	۸
$V_{EB} = 5.0 \text{ Vdc}$		I_{EBO}		5.0	μAdc

6 Lake Street, Lawrence, MA 01841

120101

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

2N5683, 2N5684 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio				
$I_C = 5.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$,	30		
$I_C = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	$h_{ m FE}$	15 5.0	60	
$I_C = 50 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$				
Collector-Emitter Saturation Voltage				
$I_C = 25 \text{ Adc}, I_B = 2.5 \text{ Adc}$	V _{CE(sat)}	1.0 5.0		Vdc
$I_C = 50 \text{ Adc}, I_B = 10 \text{ Adc}$			5.0	
Base-Emitter Saturation Voltage	V		2.0	Vdc
$I_C = 25 \text{ Adc}, I_B = 2.5 \text{ Adc}$	V _{BE(sat)}		2.0	Vac
Base-Emitter Voltage	17		2.0	Vdc
$I_C = 25 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$	V _{BE(on)}		2.0	vac
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	2.0	20	
$I_C = 5.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz}$				
Small-Signal Short-Circuit Forward Current Transfer Ratio	L L	15		
$I_C = 10 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}, f = 1.0 \text{ kHz}$	h_{fe}	13		
Output Capacitance	C		2,000	nE
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 0.1 \text{ MHz} \le f \le 1.0 \text{ MHz}$	C_{obo}	2,00	2,000	pF
SWITCHING CHARACTERISTICS				
Turn-On Time	^t on		1.5	
$V_{CC} = 30 \text{ Vdc}; I_C = 25 \text{ Adc}; I_B = 2.5 \text{ Adc}$	on	1.5		μs
Turn-Off Time	toff		3.0	Ше
$V_{CC} = 30 \text{ Vdc}$; $I_C = 25 \text{ Adc}$; $I_{B1} = I_{B2} = 2.5 \text{ Adc}$	OH		3.0	μs

SAFE OPERATING AREA

DC Tests	
$T_C = +25^{\circ}C$, 1 Cycle, $t = 1.0 \text{ s}$	
Test 1	
$V_{CE} = 6.0 \text{ Vdc}, I_{C} = 50 \text{ Adc}$	All Types
Test 2	
$V_{CE} = 30 \text{ Vdc}, I_C = 10 \text{ Adc}$	All Types
Test 3	
$V_{CE} = 50 \text{ Vdc}, I_C = 560 \text{ mAdc}$	2N5683
$V_{CE} = 60 \text{ Vdc}, I_C = 640 \text{ mAdc}$	2N5684
Test 3 $V_{CE} = 50 \text{ Vdc}, I_C = 560 \text{ mAdc}$	2N5683

⁽²⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803