imall

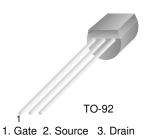
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


September 2007

2N5951 N-Channel RF Amplifier

• This device is designed primarily for electronic switching applications such as low on resistance analog switching.

• Sourced from process 50.

Absolute Maximum Ratings* Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	30	V
V _{GS}	Gate-Source Voltage	-30	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 ~ 150	°C

* This ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These rating are based on a maximum junction temperature of 150 degrees C.

2) These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $\ensuremath{\mathsf{T}}_a\ensuremath{=}25\ensuremath{^\circ}\ensuremath{\mathsf{C}}$ unless otherwise noted

Symbol	Parameter	Max.	Units
P _D Total Device Dissipation		350	mW
	Derate above 25°C	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	357	°C/W

Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Chara	storistics				
V _{(BR)GSS}	Gate-Source Breakdown Voltage	I _G = 1.0μA, V _{DS} = 0	-30		V
I _{GSS}	Gate Reverse Current	$V_{GS} = 15V, V_{DS} = 0, T = 25^{\circ}C$ T = 100°C		-1.0 -200	nA
V _{GS(off)}	Gate-Source Cut-off Voltage	V _{DS} = 15V, I _D = 100nA	-2	-5	V
V _{GS}	Gate-Source Forward Voltage	V _{DS} = 15V, I _D = 700μA	-1.3	-4.5	V
*I _{DSS} Rps(on)	Zero-Gate Voltage Drain Current * Drain-Source On Resistance	$V_{DS} = 15V, V_{GS} = 0$ $I_{D} = 400 \mu A, f = 1.0 kHz$	7	13 250	mA Ω
RDS(on)		$I_{D} = 400 \mu A, f = 1.0 kHz$		250	Ω
Goss	nal Characteristics Common- Source Output Conductance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0kHz		75	μ/Ω
gos	Output Conductance	$V_{DS} = 15V, V_{GS} = 0V, f = 100MHz$		100	μ/Ω
gis	Input Conductance	V _{DS} = 15V, V _{GS} = 0V, f = 100MHz		250	μ/Ω
	Input Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz		6	pF
Ciss	Description Transform Operation	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz		2	pF
	Reverse Transfer Capacitance				
Ciss Crss en	Equivalent Short-Circuit Input Noise Voltage	$V_{DS} = 15V, V_{GS} = 0V, f = 1.0kHz$		100	nV

* Pulse Test: Pulse Width \leq 300µs, Duty Cycle = 2%

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

Green FPS™ Power247[®] ACEx[®] Build it Now™ Green FPS[™] e-Series[™] CorePLUS™ GTO™ Power-SPM™ PowerTrench[®] *CROSSVOLT*™ i-Lo™ CTL™ IntelliMAX™ Current Transfer Logic™ QFET[®] **ISOPLANAR™** EcoSPARK[®] QS™ MegaBuck™ MICROCOUPLER™ F Fairchild® MicroFET™ Quiet Series™ Fairchild Semiconductor® MicroPak™ FACT Quiet Series™ Motion-SPM[™] **FACT[®] OPTOLOGIC[®]** SPM[®] FAST® **OPTOPLANAR[®]** STEALTH™ FastvCore™ SuperFET™ FPS™ PDP-SPM™ SuperSOT™-3 SuperSOT™-6 FRFET[®] Power220[®] Global Power ResourceSM

Power247[®] POWEREDGE[®] Power-SPM[™] PowerTrench[®] Programmable Active Droop[™] QFET[®] QS[™] QT Optoelectronics[™] Quiet Series[™] RapidConfigure[™] SMART START[™] SPM[®] STEALTH[™] SuperFET[™] SuperFCT[™] SuperSOT[™]-3 SuperSOT[™]-3

SuperSOT™-8 SyncFET™ The Power Franchise[®]

franchise

TinyBoost™ TinyBuck™ TinyDogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.	

PRODUCT STATUS DEFINITIONS