imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

Discrete POWER & Signal **Technologies**

2N5962

MMBT5962

NPN General Purpose Amplifier

This device is designed for use as low noise, high gain, general purpose amplifiers requiring collector currents to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	45	V
V _{CBO}	Collector-Base Voltage	45	V
V _{EBO}	Emitter-Base Voltage	8.0	V
Ic	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

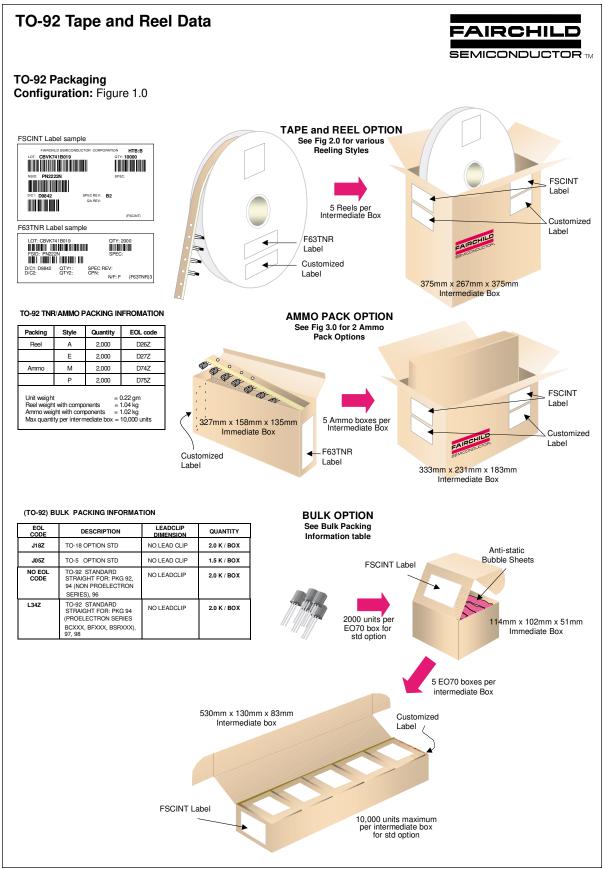
NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

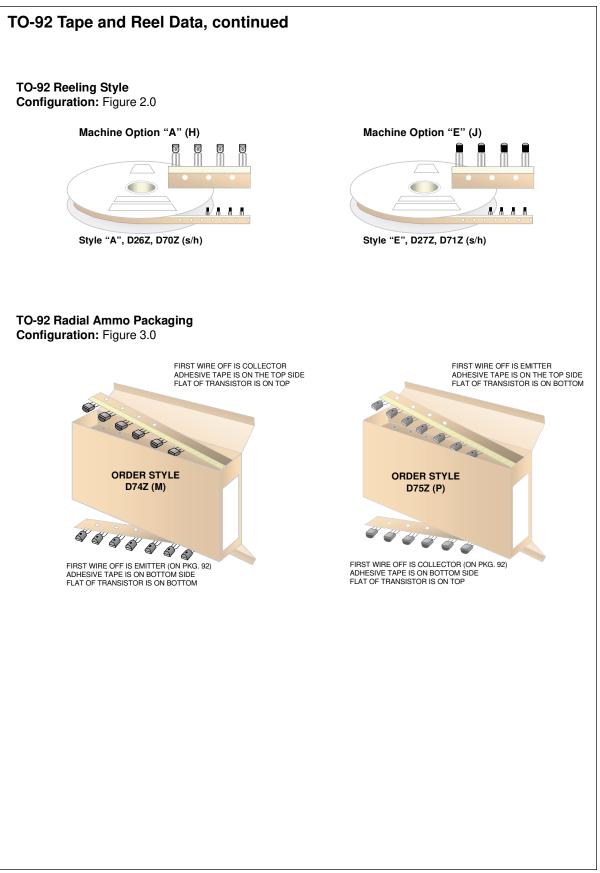
TA = 25°C unless otherwise noted

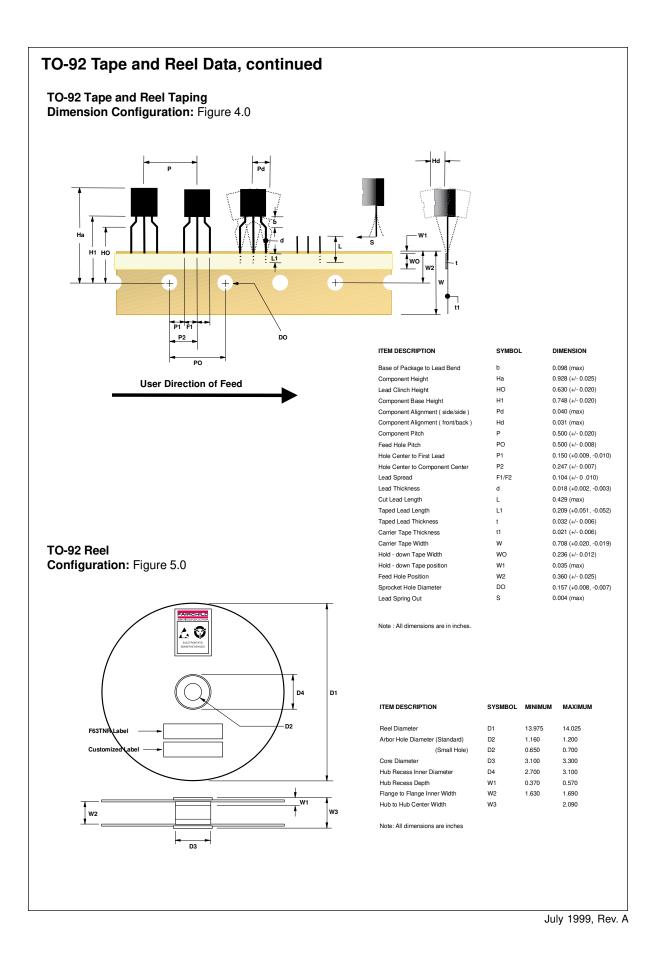
Symbol	Characteristic	Мах		Units
		2N5962	*MMBT5962	
P _D	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

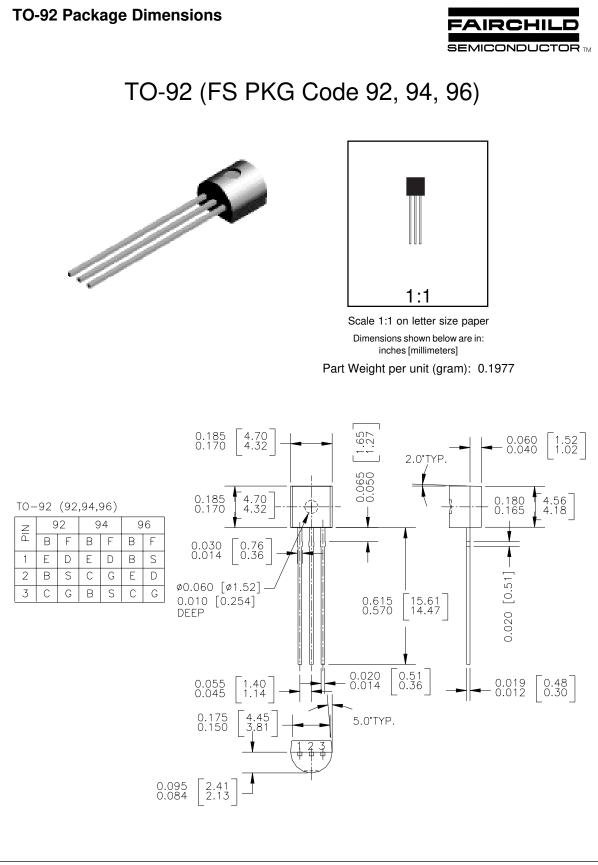

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

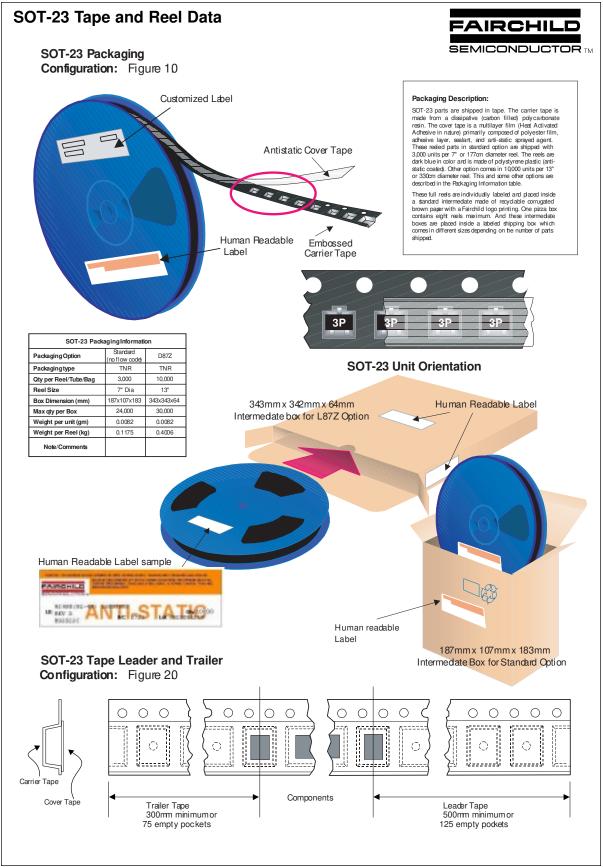
© 1997 Fairchild Semiconductor Corporation

NPN General Purpose Amplifier (continued)

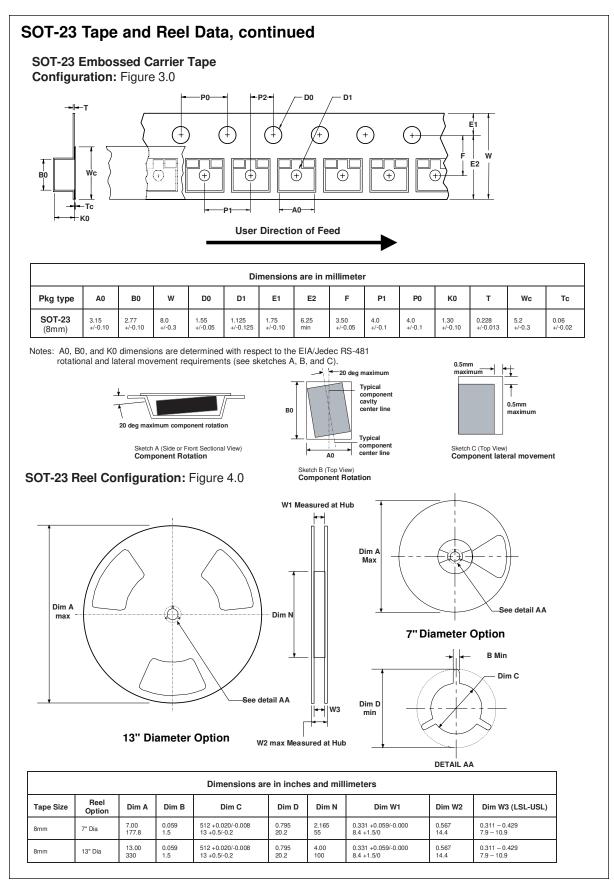

Symbol	Parameter	Test Conditions	Min	Мах	Units
OFF CHA	RACTERISTICS				
(BR)CEO	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 5.0 \text{ mA}, I_{\rm B} = 0$	45		V
(BR)CBO	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, \ I_{\rm E} = 0$	45		V
(BR)EBO	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$	8.0		V
BO	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, I_E = 0$ $V_{CB} = 30 \text{ V}, I_E = 0, T_A = 65 \text{ °C}$		2.0 50	nA nA
BO	Emitter Cutoff Current			1.0	nA
ON CHAF	ACTERISTICS*	·		•	•
FE	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}$	450		
		$V_{CE} = 5.0 \text{ V}, I_C = 100 \ \mu\text{A}$	500		
		$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	550	1 400	
	Collector-Emitter Saturation Voltage	$V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$	600	1400 0.2	V
/ _{CE(sat)} / _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ mA}$	0.5	0.2	V
SMALL S	IGNAL CHARACTERISTICS Collector-Base Capacitance	V _{CB} = 5.0 V	[4.0	pF
vcb veb				4.0	p p
v oh	Emittor Baco, Capacitanoo	$V_{} = 0.5 V$		60	nE
	Emitter-Base Capacitance	$V_{EB} = 0.5 V$		6.0	pF
	Emitter-Base Capacitance Small-Signal Current Gain	$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 5.0 \text{ V},$	600		pF
	•		600	6.0 200	pF
fe	Small-Signal Current Gain	$I_{c} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz $I_{c} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 100 MHz	600 1.0		pF
fe	•	$\begin{split} & I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{ kHz} \\ & I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{ MHz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \end{split}$			pF
fe	Small-Signal Current Gain	$I_{c} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz $I_{c} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 100 MHz			pF
fe	Small-Signal Current Gain			200	
fe	Small-Signal Current Gain			200	dB
fe	Small-Signal Current Gain	$\begin{split} & I_{C} = 10 \text{ mA}, \text{V}_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{kHz} \\ & I_{C} = 10 \text{ mA}, \text{V}_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{MHz} \\ \hline & \text{V}_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ & \text{R}_{s} = 10 \text{k}\Omega, \text{f} = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ \hline & \text{V}_{CE} = 5.0 \text{ V}, \text{I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{s} = 1.0 \text{k}\Omega, \text{f} = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ \end{split}$		200	
fe	Small-Signal Current Gain			200 3.0 6.0	dB
IF	Small-Signal Current Gain	$\begin{split} & I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{ kHz} \\ & I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{ MHz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ & R_{S} = 10 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 1.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 10 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 10 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \end{split}$		200	dB
fe	Small-Signal Current Gain	$\begin{split} & I_{C} = 10 \text{ mA}, \text{V}_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{kHz} \\ & I_{C} = 10 \text{ mA}, \text{V}_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{MHz} \\ & \text{V}_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, \text{f} = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, I_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 1.0 \text{k}\Omega, \text{f} = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, I_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, \text{f} = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, I_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, \text{f} = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, I_{C} = 100 \mu\text{A}, \\ \end{array}$		200 3.0 6.0	dB
fe	Small-Signal Current Gain	$\begin{split} & I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{ kHz} \\ & I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{ MHz} \\ & \text{V}_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 1.0 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 100 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 100 \text{k}\Omega, f = 1.0 \text{kHz}, \end{split}$		200 3.0 6.0	dB
fe	Small-Signal Current Gain	$\begin{split} & I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{ kHz} \\ & I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{ MHz} \\ \hline & V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ & R_{S} = 10 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 1.0 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 10 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 100 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 100 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ & R_{S} = 100 \text{ k}\Omega, \text{ f} = 1.0 \text{ kHz}, \\ & B_{W} = 400 \text{ Hz} \\ & V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ & H_{C} = 5.0 \text{ V},$		200 3.0 6.0 4.0	dB dB dB
fe	Small-Signal Current Gain	$\begin{split} & I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ & f = 1.0 \text{ kHz} \\ & I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ & f = 100 \text{ MHz} \\ & \text{V}_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 1.0 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 10 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 100 \text{k}\Omega, f = 1.0 \text{kHz}, \\ & \text{B}_{W} = 400 \text{Hz} \\ & \text{V}_{CE} = 5.0 \text{V}, \text{ I}_{C} = 100 \mu\text{A}, \\ & \text{R}_{S} = 100 \text{k}\Omega, f = 1.0 \text{kHz}, \end{split}$		200 3.0 6.0 4.0	dB dB dB

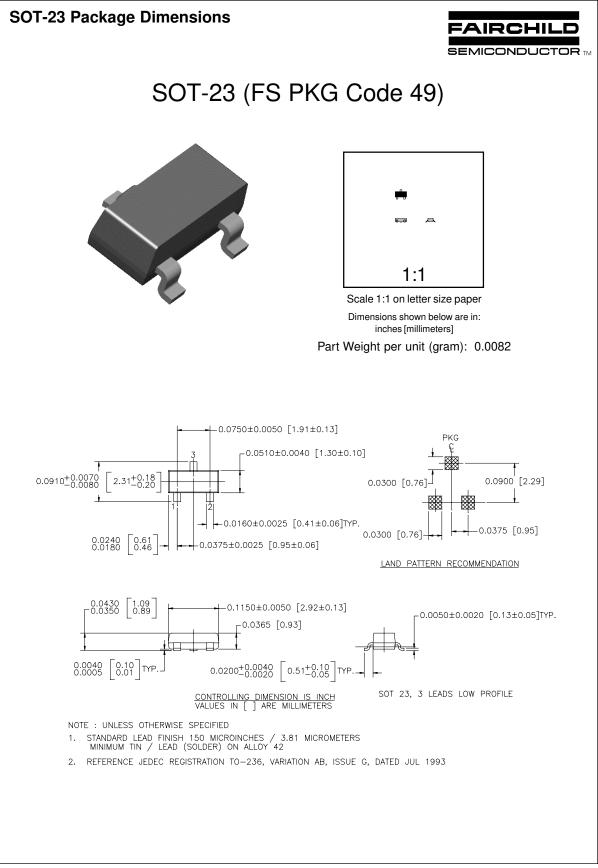

2N5962/ MMBT5962




©2001 Fairchild Semiconductor Corporation

March 2001, Rev. B1





©2000 Fairchild Semiconductor International

September 1999, Rev. C

September 1999, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator[™] GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ **POP™**

- PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8
- SvncFET™ TinyLogic™ UHC™ **VCX™**

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC