imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045

Plastic Medium-Power Complementary Silicon Transistors

Plastic medium-power complementary silicon transistors are designed for general-purpose amplifier and low-speed switching applications.

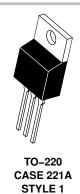
Features

- High DC Current Gain $h_{FE} = 2500$ (Typ) @ $I_C = 4.0$ Adc
- Collector-Emitter Sustaining Voltage @ 100 mAdc -V_{CEO(sus)} = 60 Vdc (Min) - 2N6040, 2N6043 = 100 Vdc (Min) - 2N6042, 2N6045
- Low Collector-Emitter Saturation Voltage -
 - $V_{CE(sat)} = 2.0 \text{ Vdc} (Max) @ I_C = 4.0 \text{ Adc} 2N6043,44$ = 2.0 Vdc (Max) @ I_C = 3.0 Adc - 2N6042, 2N6045
- Monolithic Construction with Built-In Base-Emitter Shunt Resistors
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- These Devices are Pb-Free and are RoHS Compliant*

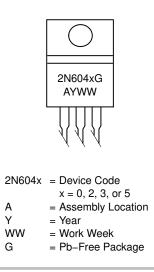
MAXIMUM RATINGS (Note 1)

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	2N6040 2N6043 2N6042 2N6045	V _{CEO}	60 100	Vdc
Collector-Base Voltage	2N6045 2N6040 2N6043 2N6042 2N6045	V _{CB}	60 100	Vdc
Emitter-Base Voltage		V _{EB}	5.0	Vdc
Collector Current	Continuous Peak	۱ _C	8.0 16	Adc
Base Current		Ι _Β	120	mAdc
Total Power Dissipation @ To Derate above 25°C	_C = 25°C	PD	75 0.60	W W/∘C
Operating and Storage Junct Temperature Range	ion	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Indicates JEDEC Registered Data.

ON


ON Semiconductor®

www.onsemi.com

DARLINGTON, 8 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 60 – 100 VOLTS, 75 WATTS

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	θJC	1.67	°C/W
Thermal Resistance, Junction-to-Ambient	θ _{JA}	57	°C/W

*ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage $(I_{C} = 100 \text{ mAdc}, I_{B} = 0)$	2N6040, 2N6043 2N6042, 2N6045	V _{CEO(sus)}	60 100		Vdc
Collector Cutoff Current $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 100 \text{ Vdc}, I_B = 0)$	2N6040, 2N6043 2N6042, 2N6045	I _{CEO}		20 20	μΑ
	2N6040, 2N6043 2N6042, 2N6045 2N6040, 2N6043 2N6041, 2N6044 2N6042, 2N6045	I _{CEX}	- - - -	20 20 200 200 200	μΑ
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$	2N6040, 2N6043 2N6042, 2N6045	I _{CBO}	- -	20 20	μΑ
Emitter Cutoff Current (V_{BE} = 5.0 Vdc, I_{C} = 0)		I _{EBO}	-	2.0	mAdc

ON CHARACTERISTICS

$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 4.0 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \\ (I_{C} = 3.0 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \\ (I_{C} = 8.0 \; \text{Adc}, \; V_{CE} = 4.0 \; \text{Vdc}) \end{array} $	2N6040, 2N6043, 2N6042, 2N6045 All Types	h _{FE}	1000 1000 100	20.000 20,000 -	-
	2N6040, 2N6043, 2N6042, 2N6045 All Types	V _{CE(sat)}	- - -	2.0 2.0 4.0	Vdc
Base–Emitter Saturation Voltage ($I_C = 8.0 \text{ Adc}, I_B = 80 \text{ mAdc}$)		V _{BE(sat)}	-	4.5	Vdc
Base–Emitter On Voltage (I_C = 4.0 Adc, V_{CE} = 4.0 Vdc)		V _{BE(on)}	-	2.8	Vdc

DYNAMIC CHARACTERISTICS

Small Signal Current Gain (I _C = 3.0 Adc, V _{CE} = 4.0 Vdc, f = 1.0 MHz)		h _{fe}	4.0	-	
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$	2N6040/2N6042 2N6043/2N6045	C _{ob}		300 200	pF
Small–Signal Current Gain (I_C = 3.0 Adc, V_{CE} = 4.0 Vdc, f = 1.0 kHz)		h _{fe}	300	-	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. *Indicates JEDEC Registered Data.

PNP – 2N6040, 2N6042, NPN – 2N6043, 2N6045

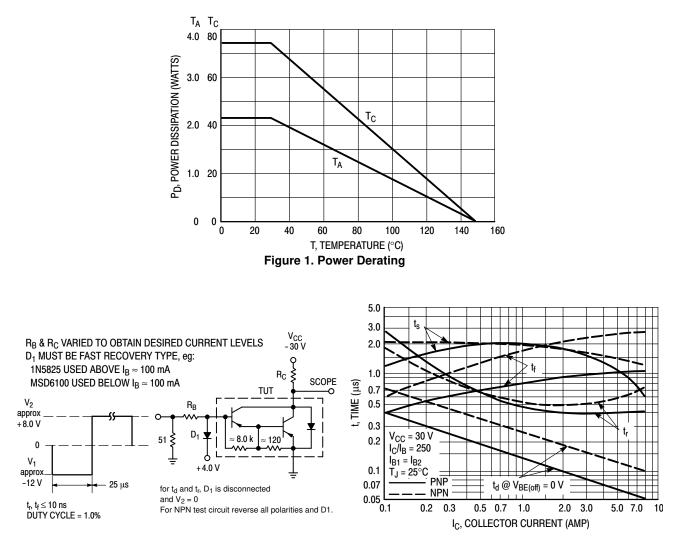
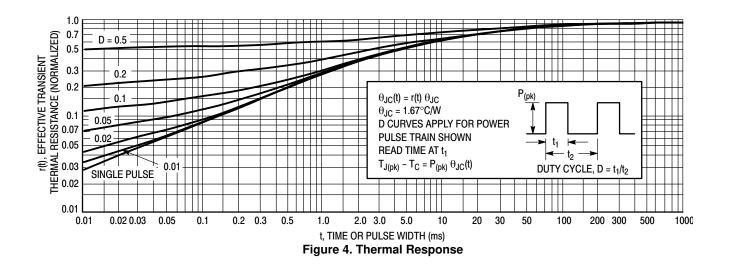



Figure 2. Switching Times Equivalent Circuit

Figure 3. Switching Times

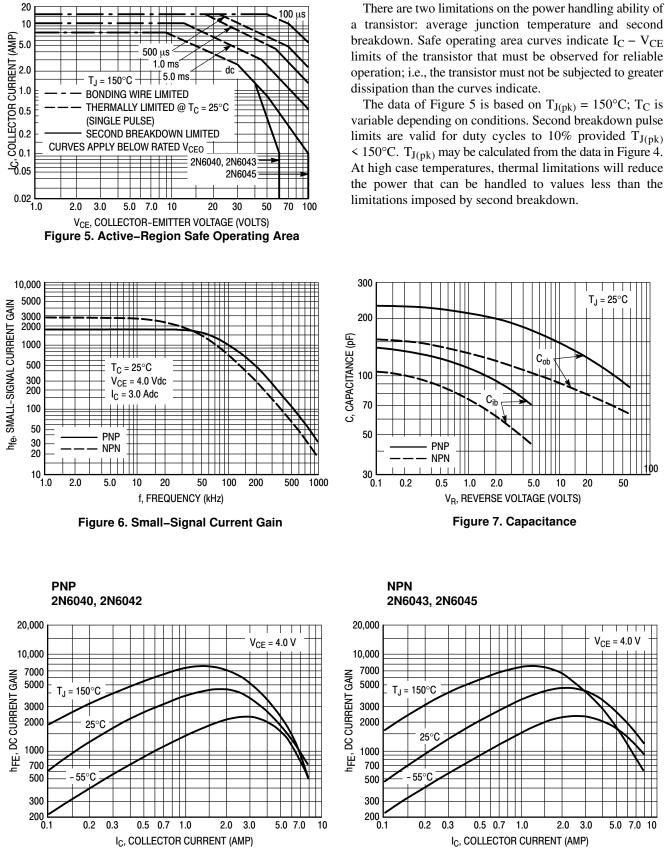
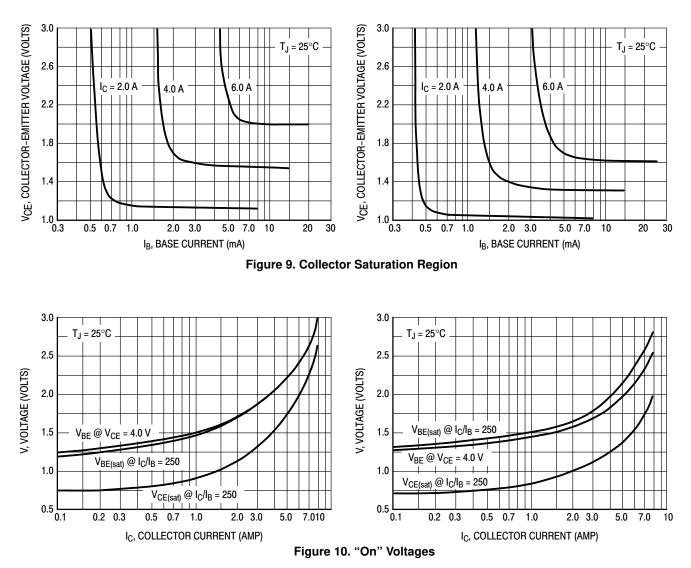
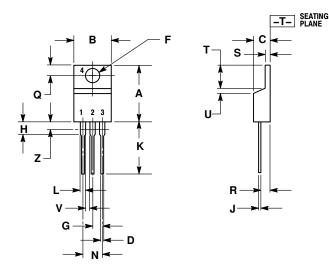



Figure 8. DC Current Gain

PNP - 2N6040, 2N6042, NPN - 2N6043, 2N6045



ORDERING INFORMATION

Device	Package	Shipping
2N6040G	TO-220 (Pb-Free)	50 Units / Rail
2N6042G	TO-220 (Pb-Free)	50 Units / Rail
2N6043G	TO-220 (Pb-Free)	50 Units / Rail
2N6045G	TO-220 (Pb-Free)	50 Units / Rail

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. 3.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

STYLE 1: BASE PIN 1. 2. COLLECTOR FMITTER 3 COLLECTOR

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other industries, LEC (SOLLC) of its substances interval or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative