

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

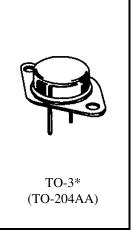
PNP DARLINGTON POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/505

Devices Qualified Level

2N6286 2N6287

JANTX JANTXV


MAXIMUM RATINGS

Ratings	Symbol	2N6286	2N6287	Unit
Collector-Emitter Voltage	V_{CEO}	-80	-100	Vdc
Collector-Base Voltage	V_{CBO}	-80 -100		Vdc
Emitter-Base Voltage	V_{EBO}	-7.0		Vdc
Base Current	I_{B}	-0.5		Adc
Collector Current	I_{C}	-20		Adc
Total Power Dissipation ⁽¹⁾ @ $T_C = +25^{\circ}C$	n 175		W	
$^{\circ}$	P_{T}	87.5		W
Operating & Storage Junction Temperature Range	Top, Tstg	-65 to	+175	^{0}C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.857	⁰ C/W

¹⁾ Derate linearly @ 1.17 W/ 0 C above $T_{C} > +25^{0}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}$ C unless otherwise noted)

Characteristic	es	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = -100 \text{ mAdc}$	2N6286	$V_{(BR)CEO}$	-80		Vdc
	2N6287		-100		
Collector-Emitter Cutoff Current					
$V_{CE} = -40 \text{ Vdc}$	2N6286	I_{CEO}		-1.0	mAdc
$V_{CE} = -50 \text{ Vdc}$	2N6287			-1.0	
Collector-Emitter Cutoff Current					
$V_{CE} = -80 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N6286	I_{CEX}		-0.5	mAdc
$V_{CE} = -100 \text{ Vdc}, V_{BE} = 1.5 \text{ Vdc}$	2N6287			-0.5	
Emitter-Base Cutoff Current		т		2.5	A do
$V_{EB} = -7.0 \text{ Vdc}$		I_{EBO}		-2.5	Adc

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N6286, 2N6287 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)				
Forward-Current Transfer Ratio				
$I_C = -1.0 \text{ Adc}, V_{CE} = -3.0 \text{ Vdc}$	1.	1,500		
$I_C = -10 \text{ Adc}, \ V_{CE} = -3.0 \text{ Vdc}$	$h_{ m FE}$	1,250 300	18,000	
$I_C = -20 \text{ Adc}, \ V_{CE} = -3.0 \text{ Vdc}$				
Collector-Emitter Saturation Voltage				
$I_C = -20$ Adc, $I_B = -200$ mAdc	$V_{CE(sat)}$		-3.0	Vdc
$I_C = -10$ Adc, $I_B = -40$ mAdc			-2.0	
Base-Emitter Saturation Voltage	V		-4.0	Vdc
$I_C = -20$ Adc, $I_B = -200$ mAdc	V _{BE(sat)}		-4.0	vuc
Base-Emitter Voltage	V		-2.8	Vdc
$I_C = -10 \text{ Adc}, V_{CE} = -3.0 \text{ Vdc}$	V _{BE(on)}		-2.0	vuc
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}	8.0	80	
$I_C = -10 \text{ Adc}, V_{CE} = -3.0 \text{ Vdc} f = 1.0 \text{ MHz}$				
Small-Signal Short-Circuit Forward Current Transfer Ratio	h	300		
$I_C = -10 \text{ Adc}, V_{CE} = -3.0 \text{ Vdc}$	h_{fe}	300		
Output Capacitance	C		400	ъE
$V_{CB} = -10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C_{obo}		400	pF
SWITCHING CHARACTERISTICS				
Turn-On Time	^t on		2.0	
$V_{CC} = -30 \text{ Vdc}; I_{C} = -10 \text{ Adc}; I_{B} = -40 \text{ mAdc}$	on		2.0	μs
Turn-Off Time	^t off		10	Ша
$V_{CC} = -30 \text{ Vdc}$; $I_{C} = -10 \text{ Adc}$; $I_{B1} = I_{B2} = -40 \text{ mAdc}$	OH		10	μs

SAFE OPERATING AREA

DC Tests		
$T_C = +25^{\circ}C$, 1 Cycle, $t = 1.0 \text{ s}$		
Test 1		
$V_{CE} = -8.75 \text{ Vdc}, I_{C} = -20 \text{ Adc}$	All Types	
Test 2		
$V_{CE} = -30 \text{ Vdc}, I_{C} = -5.8 \text{ Adc}$	All Types	
Test 3		
$V_{CE} = -80 \text{ Vdc}, I_{C} = -100 \text{ mAdc}$	2N6286	
$V_{CE} = -100 \text{ Vdc}, I_{C} = -100 \text{ mAdc}$	2N6287	
(2) Pulsa Tast: Pulsa Width - 200us Duty	Tuolo < 2.0%	

⁽²⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.