

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







Central To Semiconductor Corp.

145 Adams Avenue, Hauppauge, NY 11788 USA Tel: (631) 435-1110 • Fax: (631) 435-1824

Manufacturers of World Class Discrete Semiconductors

2N681,A THRU 2N692,A

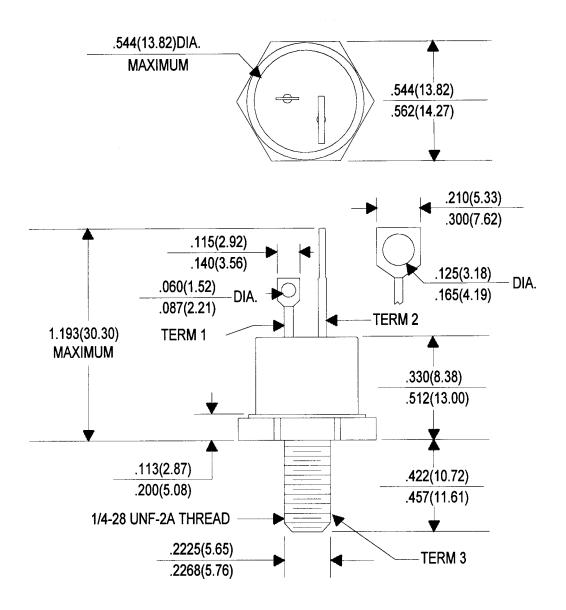
SILICON CONTROLLED RECTIFIER 25 AMPS, 25 THRU 800 VOLTS

**JEDEC TO-48 CASE** 

## **DESCRIPTION**

The CENTRAL SEMICONDUCTOR 2N681,A Series types are Silicon Controlled Rectifiers designed for phase control applications.

MAXIMUM RATINGS (T<sub>C</sub>=25°C unless otherwise noted)


|                                             | 2N6         | 2N6         | 2N6         | 2N6         | 2N6                 | 2N6         | 2N6         | 2N6         | 2N6         | 2N6         | 2N6         | 2N6         |              |
|---------------------------------------------|-------------|-------------|-------------|-------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                                             | <u>81,A</u> | <u>82,A</u> | <u>83,A</u> | <u>84.A</u> | <u>85.A</u>         | <u>86.A</u> | <u>87.A</u> | <u>88,A</u> | <u>89,A</u> | <u>90,A</u> | <u>91.A</u> | <u>92,A</u> | <u>UNITS</u> |
| $v_{DRM}$                                   | 25          | 50          | 100         | 150         | 200                 | 250         | 300         | 400         | 500         | 600         | 700         | 800         | V            |
| $V_{RRM}$                                   | 25          | 50          | 100         | 150         | 200                 | 250         | 300         | 400         | 500         | 600         | 700         | 800         | V            |
| <sup>V</sup> RSM                            | 25          | 50          | 100         | 150         | 200                 | 250         | 300         | 400         | 500         | 600         | 700         | 800         | V            |
| RMS On-State Current (T <sub>C</sub> =70°C) |             |             |             |             | <sup>I</sup> T(RMS) |             |             | 25          |             |             |             |             | Α            |
| Peak One Cycle Surge Current (60Hz)         |             |             |             |             | ITSM                |             |             | 200         |             |             |             |             | Α            |
| Peak Gate Power Dissipation                 |             |             |             |             | PGM                 |             |             | 5.0         |             |             |             |             | W            |
| Average Gate Power Dissipation              |             |             |             |             | P <sub>G</sub> (AV) |             |             | 0.5         |             |             |             |             | W            |
| Storage Temperature                         |             |             |             |             | T <sub>stg</sub>    |             |             | -65 to +150 |             |             |             |             | °C           |
| Operating Junction Temperature              |             |             |             |             | Tj                  |             |             | -65 to +125 |             |             |             |             | °C           |
| Thermal Resistance, Junction to Case        |             |             |             |             | ΘĴC                 |             |             | 1.5         |             |             |             |             | °C/W         |

# ELECTRICAL CHARACTERISTICS (T<sub>C</sub>=25°C unless otherwise noted)

| <u>SYMBOL</u>                       | TEST CONDITIONS                                                                    |                 | MIN | <u>TYP</u> | MAX | UNITS |
|-------------------------------------|------------------------------------------------------------------------------------|-----------------|-----|------------|-----|-------|
| IDRM, IRRM                          | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N681,A, 2N682, | 2N683, 2N684,A) |     |            | 13  | mA    |
| IDRM, IRRM                          | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N685,A)        |                 |     |            | 12  | mA    |
| <sup>I</sup> DRM <sup>, I</sup> RRM | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N686,A)        |                 |     |            | 11  | mA    |
| <sup>I</sup> DRM <sup>, I</sup> RRM | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N687,A)        |                 |     |            | 10  | mA    |
| I <sub>DRM</sub> , I <sub>RRM</sub> | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N688,A)        |                 |     |            | 8.0 | mA    |
| I <sub>DRM</sub> , I <sub>RRM</sub> | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N689,A)        |                 |     |            | 6.0 | mA    |
| <sup>I</sup> DRM <sup>, I</sup> RRM | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N690,A)        |                 |     |            | 5.0 | mA    |
| IDRM, IRRM                          | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N691,A)        |                 |     |            | 4.5 | mΑ    |
| IDRM, IRRM                          | Rated V <sub>DRM</sub> , V <sub>RRM</sub> , T <sub>C</sub> =125°C (2N692,A)        |                 |     |            | 4.0 | mΑ    |
| <sup>I</sup> GT                     | $V_D=12V$ , $R_L=50\Omega$                                                         |                 |     |            | 40  | mA    |
| $V_{GT}$                            | $V_D$ =12V, $R_L$ =50 $\Omega$                                                     |                 |     |            | 2.0 | V     |
| $V_{TM}$                            | I <sub>TM</sub> =50A, PW=1.0ms, D.C=2.0%                                           |                 |     |            | 2.0 | V     |
| lН                                  | $V_D$ =7.0V, R <sub>GK</sub> =1K $\Omega$ (2N681 thru 2N692)                       |                 |     |            | 100 | mA    |
| ΙН                                  | $V_D$ =7.0V, $R_{GK}$ =1K $\Omega$ (2N681A thru 2N692A)                            |                 |     |            | 50  | mA    |
| dv/dt                               | Rated V <sub>DRM</sub> , T <sub>C</sub> =125°C                                     |                 |     | 100        |     | V/μs  |
| <sup>t</sup> on                     | I <sub>F</sub> =10A, I <sub>G</sub> =200mA                                         |                 |     | 2.0        |     | μS    |
| <sup>t</sup> off                    | I <sub>F</sub> =10A, I <sub>G</sub> =200mA                                         |                 |     | 15         |     | μS    |

(See Reverse Side)

# JEDEC TO-48 CASE - MECHANICAL OUTLINE



All Dimensions in Inches (mm).

## **LEAD CODE:**

TERM 1) GATE TERM 2) CATHODE TERM 3) ANODE



#### **OUTSTANDING SUPPORT AND SUPERIOR SERVICES**



#### **PRODUCT SUPPORT**

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

#### **DESIGNER SUPPORT/SERVICES**

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free quick ship samples (2<sup>nd</sup> day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- · Special wafer diffusions
- · PbSn plating options
- · Package details
- · Application notes
- · Application and design sample kits
- Custom product and package development

#### **CONTACT US**

### Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: <a href="https://www.centralsemi.com/wwreps">www.centralsemi.com/wwreps</a>

**Worldwide Distributors:** 

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: <a href="https://www.centralsemi.com/terms">www.centralsemi.com/terms</a>

www.centralsemi.com