

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

P-CHANNEL MOSFET

Qualified per MIL-PRF-19500/564

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This 2N6849 switching transistor is military qualified up to the JANS level for high-reliability applications. This device is also available in a low profile U surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6849 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/564.
 (See part nomenclature for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Lightweight top-hat design with flexible terminals offers a variety of mounting flexibility.
- Military and other high-reliability applications.

TO-205AF (TO-39) Package

Also available in:

U-18 LCC package (surface mount)

2N6849U

MAXIMUM RATINGS @ T_A = +25°C unless otherwise stated

Parameters / Test Conditions	Symbol	Value	Unit
Operating & Storage Junction Temperature Range	T _J & T _{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case	R _{OJC}	5.0	°C/W
Total Power Dissipation \bigcirc T _A = +25 °C	(1) Рт	0.8	w
@ T _C = +25 °C	(1)	25	
Drain-Source Voltage, dc	V _{DS}	-100	V
Gate-Source Voltage, dc	V _{GS}	± 20	V
Drain Current, dc @ T _C = +25 °C (2)	I _{D1}	-6.5	Α
Drain Current, dc @ T _C = +100 °C (2)	I _{D2}	-4.1	Α
Off-State Current (Peak Total Value) (3)	I _{DM}	-25	A (pk)
Source Current	Is	-6.5	Α

Notes: 1. Derate linearly 0.2 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.

2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.

$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

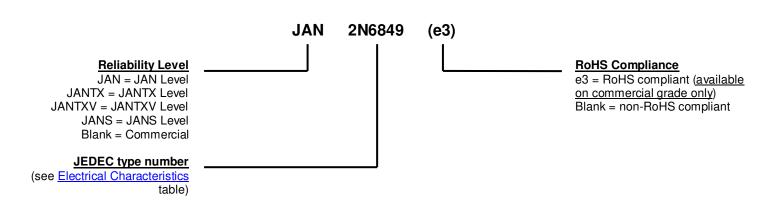
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Symbol Definition				
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.				
I _F	Forward current				
R_{G}	Gate drive impedance				
V_{DD}	Drain supply voltage				
V_{DS}	Drain source voltage, dc				
V_{GS}	Gate source voltage, dc				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS	·			
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = -1.0 \text{ mA}$	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = +125$ °C $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = -55$ °C	V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	-2.0 -1.0	-4.0 -5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 ^{\circ}\text{C}$	I _{GSS1}		±100 ±200	nA
Drain Current V _{GS} = 0 V, V _{DS} = -80 V	I _{DSS1}		-25	μΑ
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}, T_J = +125 °C$	I _{DSS2}		-0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = -10 \text{ V}, I_D = -4.1 \text{ A pulsed}$	r _{DS(on)1}		0.30	Ω
Static Drain-Source On-State Resistance V_{GS} = -10 V, I_D = -6.5 A pulsed	r _{DS(on)2}		0.32	Ω
Static Drain-Source On-State Resistance $T_J = +125$ °C $V_{GS} = -10$ V, $I_D = -4.1$ A pulsed	r _{DS(on)3}		0.54	Ω
Diode Forward Voltage V _{GS} = 0 V, I _D = -6.5 A pulsed	V _{SD}		-4.3	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge V_{GS} = -10 V, I_D = -6.5 A, V_{DS} = -50 V	$Q_{g(on)}$		34.8	nC
Gate to Source Charge $V_{GS} = -10 \text{ V}, I_D = -6.5 \text{ A}, V_{DS} = -50 \text{ V}$	Q_gs		6.8	nC
Gate to Drain Charge $V_{GS} = -10 \text{ V}, I_D = -6.5 \text{ A}, V_{DS} = -50 \text{ V}$	Q_{gd}		23.1	nC

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time				
$I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	$t_{d(on)}$		60	ns
Rinse time $I_D = -6.5$ A, $V_{GS} = -10$ V, $R_G = 7.5$ Ω , $V_{DD} = -40$ V	t _r		140	ns
Turn-off delay time $I_D = -6.5$ A, $V_{GS} = -10$ V, $R_G = 7.5$ Ω , $V_{DD} = -40$ V	t _{d(off)}		140	ns
Fall time $I_D = -6.5$ A, $V_{GS} = -10$ V, $R_G = 7.5$ Ω , $V_{DD} = -40$ V	t _f		140	ns
Diode Reverse Recovery Time di/dt \leq -100 A/ μ s, V _{DD} \leq -50 V, I _F = -6.5 A	t _{rr}		250	ns

GRAPHS

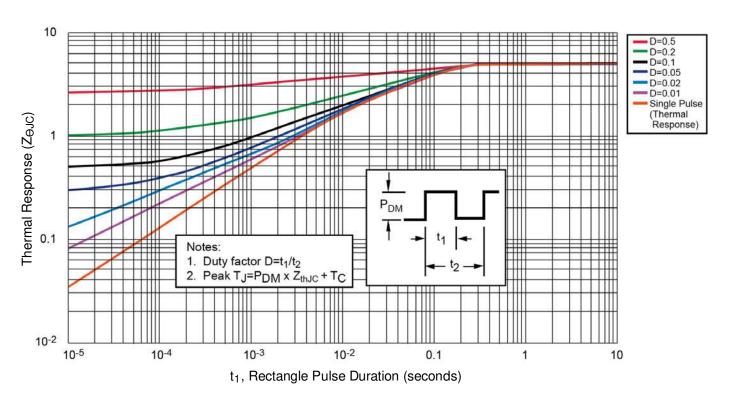


FIGURE 1 - Normalized Transient Thermal Impedance

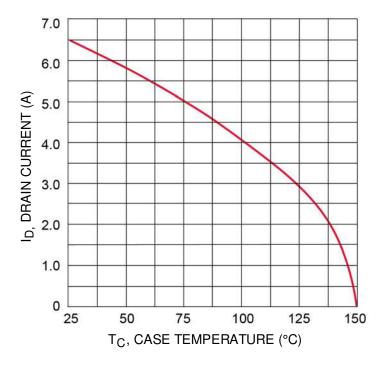


FIGURE 2 – Maximum Drain Current vs Case Temperature

GRAPHS (continued)

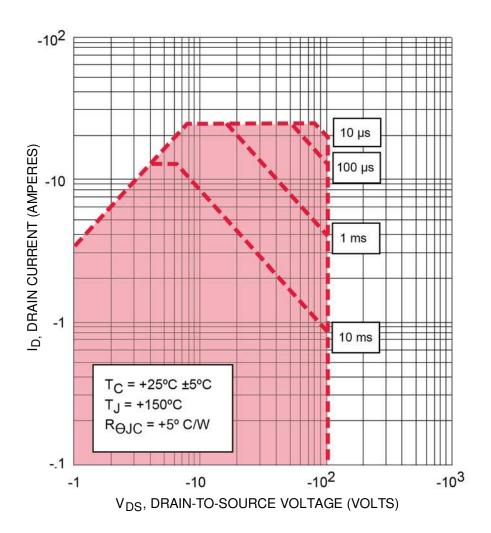
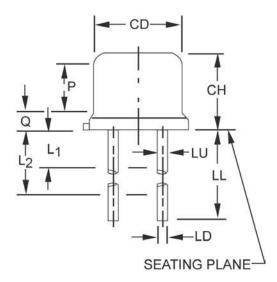
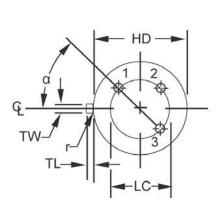
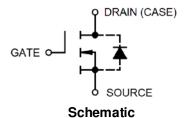




FIGURE 3 - Maximum Safe Operating Area



PACKAGE DIMENSIONS

		Dimer	nsions				
Symbol	In	nch Millimeters		Inch		Millimeters	
	Min	Max	Min	Max			
CD	0.305	0.335	7.75	8.51			
СН	0.160	0.180	4.07	4.57			
HD	0.335	0.370	8.51	9.39			
LC	0.20	0.200 TP		5.08 TP			
LD	0.016	0.021	0.41	0.53	7, 8		
LL	0.500	0.750	12.70	19.05	7, 8		
LU	0.016	0.019	0.41	0.48	7, 8		
L1	-	0.050	-	1.27	7, 8		
L2	0.250	-	6.35	-	7, 8		
Р	0.100	-	2.54	-	5		
Q	-	0.050	-	1.27	4		
TL	0.029	0.045	0.74	1.14	3		
TW	0.028	0.034	0.72	0.86	2		
r	-	0.010	-	0.25	9		
α	45° TP		45° TP		6		

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Beyond radius (r) maximum, TW shall be held for a minimum length of 0.011 (0.028 mm).
- 3. Dimension TL measured from maximum HD.
- 4. Outline in this zone is not controlled.
- 5. Dimension CD shall not vary more than 0.010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Leads at gauge plane 0.054 +0.001, -0.000 (1.37 +0.03, -0.00 mm) below seating plane shall be within 0.007 (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. LU applies between L1 and L2. LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. Radius (r) applies to both inside corners of tab.
- 10. Drain is electrically connected to the case.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 = source, lead 2 = gate, lead 3 = drain.