: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

N-CHANNEL LOGIC LEVEL MOSFET
 Qualified per MIL-PRF-19500/570

DEVICES

2N6901

LEVELS
 JAN JANTX JANTXV

2N6901 TO-205AF (formerly TO-39)

SEE FIGURE 1

ELECTRICAL CHARACTERISTICS $\left(\boldsymbol{T}_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS				
Drain-Source Breakdown Voltage $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{mAdc}$	$\mathrm{V}_{\text {(BR)DSS }}$	100		Vdc
$\begin{aligned} & \text { Gate-Source Voltage (Threshold) } \\ & \mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{i}}=-55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th}) 1}$ $\mathrm{V}_{\mathrm{GS}(\mathrm{th}) 2}$ $\mathrm{V}_{\mathrm{GS}(\mathrm{th}) 3}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	Vdc
Gate Current $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{GSS} 1} \\ & \mathrm{I}_{\mathrm{GSS} 2} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 100 \\ & \pm 200 \end{aligned}$	nAdc
Drain Current $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=80 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{DSS} 1}$ $\mathrm{I}_{\mathrm{DSS} 2}$		$\begin{gathered} 1.0 \\ 50.0 \end{gathered}$	$\mu \mathrm{Adc}$ uAdc
Static Drain-Source On-State Resistance $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A}$ pulsed $\begin{aligned} & \mathrm{T}_{\mathrm{j}}=-125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.07 \mathrm{~A} \text { pulsed } \end{aligned}$	$\mathrm{r}_{\mathrm{DS}(\mathrm{on}) 1}$ $\mathrm{r}_{\mathrm{DS}(\text { on)2 }}$		1.4 2.6	Ω Ω
Diode Forward Voltage $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.69 \mathrm{~A}$ pulsed	V_{SD}	0.8	1.6	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Gate Charge:		$\mathrm{Q}_{\mathrm{g}(\mathrm{on})}$			
On-State Gate Charge	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.69 \mathrm{~A}$	Q_{gs}		5.0	
Gate to Source Charge	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}$	Q_{gd}		1.0	nC
Gate to Drain Charge		2.9			

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit	
Switching time tests:	$\mathrm{I}_{\mathrm{D}}=1.69 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{Vdc}$,				
Turn-on delay time	Gate drive impedance $=$	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$		25	
Rinse time	25Ω,	t_{r}		80	ns
Turn-off delay time	$\mathrm{V}_{\mathrm{DD}}=50 \mathrm{Vdc}$	$\mathrm{t}_{\mathrm{d}(\mathrm{off})}$		45	
Fall time	t_{f}		80		
Diode Reverse Recovery Time	30 V,			250	ns
	t_{rr}				

PACKAGE DIMENSIONS

Symbol	Dimensions				
	Inches		Millimeters		
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.160	.180	4.07	4.57	
HD	.335	.370	8.51	9.40	
LC	.200 TP	5.08 TP			
LD	.016	.021	0.41	0.53	8,9
LL	.500	.750	12.70	19.05	8,9
LU	.016	.019	0.41	0.48	8,9
L1		.050		1.27	8,9
L2	.250		6.35		8,9
P	.100		2.54		6
Q		.050		1.27	5
TL	.029	.045	0.74	1.14	4
TW	.028	.034	0.71	0.86	3
r		.010		0.25	10
α	$45^{\circ} \mathrm{TP}$	$45^{\circ} \mathrm{TP}$	6		

NOTE:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Beyond radius(r) maximum, TW shall be held for a minimum length of $.011(0.28 \mathrm{~mm})$.
4. Dimension TL measured from maximum HD.
5. Outline in this zone is not controlled.
6. Dimension CD shall not vary more than $.010(0.25 \mathrm{~mm})$ in zone P. This zone is controlled for automatic handling.
7. Leads at gauge plane $.054+.001,-.000(1.37+0.03,-0.00 \mathrm{~mm})$ below seating plane shall be within $.007(0.18 \mathrm{~mm})$ radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
8. LU applies between L1 and L2. LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
9. All three leads.
10. Radius(r) applies to both inside corners of tab.
11. Drain is electrically connected to the case.
12. Pin out: 1- source, 2 - gate, 3 - drain (case).
13. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1. Physical dimensions for TO-205 AF

