# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# 2N7002L, 2V7002L

# **Small Signal MOSFET**

60 V, 115 mA, N-Channel SOT-23

#### Features

- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable (2V7002L)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### MAXIMUM RATINGS

| Rating                                                                                                           | Symbol                                              | Value               | Unit       |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|------------|
| Drain-Source Voltage                                                                                             | V <sub>DSS</sub>                                    | 60                  | Vdc        |
| Drain–Gate Voltage ( $R_{GS}$ = 1.0 M $\Omega$ )                                                                 | V <sub>DGR</sub>                                    | 60                  | Vdc        |
| Drain Current<br>– Continuous $T_C = 25^{\circ}C$ (Note 1)<br>$T_C = 100^{\circ}C$ (Note 1)<br>– Pulsed (Note 2) | I <sub>D</sub><br>I <sub>D</sub><br>I <sub>DM</sub> | ±115<br>±75<br>±800 | mAdc       |
| Gate–Source Voltage<br>– Continuous<br>– Non–repetitive (t <sub>p</sub> ≤ 50 μs)                                 | V <sub>GS</sub><br>V <sub>GSM</sub>                 | ±20<br>±40          | Vdc<br>Vpk |

#### THERMAL CHARACTERISTICS

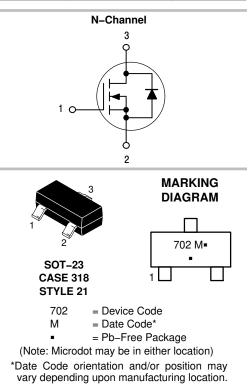
| Characteristic                                                                                                                                | Symbol                             | Max               | Unit                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------|
| Total Device Dissipation FR–5 Board<br>(Note 3) T <sub>A</sub> = 25°C<br>Derate above 25°C<br>Thermal Resistance, Junction–to–Ambient         | P <sub>D</sub><br>R <sub>θJA</sub> | 225<br>1.8<br>556 | mW<br>mW/°C<br>°C/W |
| Total Device Dissipation<br>(Note 4) Alumina Substrate, T <sub>A</sub> = 25°C<br>Derate above 25°C<br>Thermal Resistance, Junction–to–Ambient | P <sub>D</sub><br>R <sub>θJA</sub> | 300<br>2.4<br>417 | mW<br>mW/°C<br>°C/W |
| Junction and Storage Temperature                                                                                                              | T <sub>J</sub> , T <sub>stg</sub>  | -55 to<br>+150    | °C                  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The Power Dissipation of the package may result in a lower continuous drain current.

2. Pulse Test: Pulse Width  $\leq$  300 µs, Duty Cycle  $\leq$  2.0%.

3. FR-5 = 1.0 x 0.75 x 0.062 in.


4. Alumina = 0.4 x 0.3 x 0.025 in 99.5% alumina.



## **ON Semiconductor®**

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 60 V                 | 7.5 Ω @ 10 V,<br>500 mA | 115 mA             |



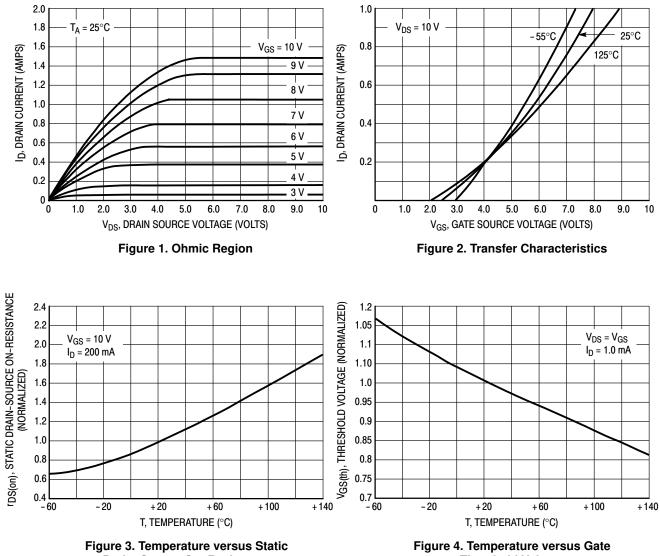
#### **ORDERING INFORMATION**

| Device      | Package                                    | Shipping <sup>†</sup> |  |  |
|-------------|--------------------------------------------|-----------------------|--|--|
| 2N7002LT1G  | SOT-23                                     | 3000 Tape & Reel      |  |  |
| 2N7002LT3G  | 3G <sup>(Pb-Free)</sup> 10,000 Tape & Reel |                       |  |  |
| 2V7002LT1G  |                                            | 3000 Tape & Reel      |  |  |
| 2V7002LT3G  | SOT-23                                     | 10,000 Tape & Reel    |  |  |
| 2N7002LT1H* | (Pb-Free)                                  | 3000 Tape & Reel      |  |  |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*Not for new design.

# 2N7002L, 2V7002L

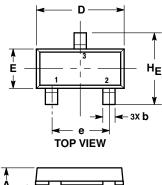

## **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

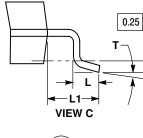
| Characteristic                                                                                                                                                                                                                                              | Symbol               | Min              | Тур         | Max                        | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-------------|----------------------------|------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                         |                      |                  |             |                            |      |
| Drain–Source Breakdown Voltage $(V_{GS} = 0, I_D = 10 \ \mu Adc)$                                                                                                                                                                                           | V <sub>(BR)DSS</sub> | 60               | _           | -                          | Vdc  |
| $ \begin{array}{ll} \mbox{Zero Gate Voltage Drain Current} & T_J = 25^\circ C \\ (V_{GS} = 0,  V_{DS} = 60  Vdc) & T_J = 125^\circ C \end{array} $                                                                                                          | I <sub>DSS</sub>     | -                |             | 1.0<br>500                 | μAdc |
| Gate-Body Leakage Current, Forward $(V_{GS} = 20 \text{ Vdc})$                                                                                                                                                                                              | I <sub>GSSF</sub>    | -                | -           | 100                        | nAdc |
| Gate-Body Leakage Current, Reverse<br>(V <sub>GS</sub> = -20 Vdc)                                                                                                                                                                                           | I <sub>GSSR</sub>    | -                | -           | -100                       | nAdc |
| ON CHARACTERISTICS (Note 5)                                                                                                                                                                                                                                 |                      |                  |             |                            |      |
| Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$                                                                                                                                                                                             | V <sub>GS(th)</sub>  | 1.0              | -           | 2.5                        | Vdc  |
| $ \begin{array}{l} \text{On-State Drain Current} \\ (\text{V}_{DS} \geq 2.0 \text{ V}_{DS(on)}, \text{ V}_{GS} = 10 \text{ Vdc}) \end{array} $                                                                                                              | I <sub>D(on)</sub>   | 500              | -           | -                          | mA   |
| $\begin{array}{l} \text{Static Drain-Source On-State Voltage} \\ (\text{V}_{\text{GS}} = 10 \text{ Vdc}, \text{ I}_{\text{D}} = 500 \text{ mAdc}) \\ (\text{V}_{\text{GS}} = 5.0 \text{ Vdc}, \text{ I}_{\text{D}} = 50 \text{ mAdc}) \end{array}$          | V <sub>DS(on)</sub>  | -<br>-           |             | 3.75<br>0.375              | Vdc  |
| $ \begin{array}{l} \mbox{Static Drain-Source On-State Resistance} \\ (V_{GS} = 10 \ V, \ I_D = 500 \ mAdc) \\ (V_{GS} = 5.0 \ Vdc, \ I_D = 50 \ mAdc) \\ T_C = 125^{\circ}C \\ T_C = 125^{\circ}C \\ T_C = 125^{\circ}C \\ T_C = 125^{\circ}C \end{array} $ | r <sub>DS(on)</sub>  | -<br>-<br>-<br>- | -<br>-<br>- | 7.5<br>13.5<br>7.5<br>13.5 | Ohms |
| Forward Transconductance $(V_{DS} \ge 2.0 V_{DS(on)}, I_D = 200 \text{ mAdc})$                                                                                                                                                                              | 9fs                  | 80               | -           | -                          | mS   |
| DYNAMIC CHARACTERISTICS                                                                                                                                                                                                                                     | <u> </u>             |                  |             | 1                          | 1    |
| Input Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$                                                                                                                                                                              | C <sub>iss</sub>     | -                | _           | 50                         | pF   |
| Output Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$                                                                                                                                                                             | C <sub>oss</sub>     | -                | -           | 25                         | pF   |
| Reverse Transfer Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, f = 1.0 \text{ MHz})$                                                                                                                                                                   | C <sub>rss</sub>     | -                | -           | 5.0                        | pF   |
| SWITCHING CHARACTERISTICS (Note 5)                                                                                                                                                                                                                          |                      |                  |             |                            |      |
| Turn–On Delay Time $(V_{DD} = 25 \text{ Vdc}, I_D \cong 500 \text{ mAdc},$                                                                                                                                                                                  | t <sub>d(on)</sub>   | -                | -           | 20                         | ns   |
| Turn–Off Delay Time $R_G = 25 \Omega$ , $R_L = 50 \Omega$ , $V_{gen} = 10 V$ )                                                                                                                                                                              | t <sub>d(off)</sub>  | -                | -           | 40                         | ns   |
| BODY-DRAIN DIODE RATINGS                                                                                                                                                                                                                                    |                      |                  |             |                            |      |
| Diode Forward On–Voltage $(I_S = 11.5 \text{ mAdc}, V_{GS} = 0 \text{ V})$                                                                                                                                                                                  | V <sub>SD</sub>      | -                | -           | -1.5                       | Vdc  |
| Source Current Continuous<br>(Body Diode)                                                                                                                                                                                                                   | ۱ <sub>S</sub>       | -                | -           | -115                       | mAdc |
| Source Current Pulsed                                                                                                                                                                                                                                       | I <sub>SM</sub>      | -                | -           | -800                       | mAdc |
|                                                                                                                                                                                                                                                             |                      |                  |             |                            |      |

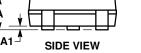
5. Pulse Test: Pulse Width  $\leq$  300 µs, Duty Cycle  $\leq$  2.0%.

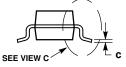
### 2N7002L, 2V7002L

### **TYPICAL ELECTRICAL CHARACTERISTICS**





Drain-Source On-Resistance


**Threshold Voltage** 


#### PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AR** 





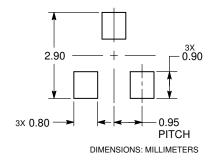




END VIEW

NOTES:

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF 3.


THE BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4

| Hornosiono, on date bonno. |             |      |      |        |       |       |
|----------------------------|-------------|------|------|--------|-------|-------|
|                            | MILLIMETERS |      |      | INCHES |       |       |
| DIM                        | MIN         | NOM  | MAX  | MIN    | NOM   | MAX   |
| Α                          | 0.89        | 1.00 | 1.11 | 0.035  | 0.039 | 0.044 |
| A1                         | 0.01        | 0.06 | 0.10 | 0.000  | 0.002 | 0.004 |
| b                          | 0.37        | 0.44 | 0.50 | 0.015  | 0.017 | 0.020 |
| С                          | 0.08        | 0.14 | 0.20 | 0.003  | 0.006 | 0.008 |
| D                          | 2.80        | 2.90 | 3.04 | 0.110  | 0.114 | 0.120 |
| Е                          | 1.20        | 1.30 | 1.40 | 0.047  | 0.051 | 0.055 |
| е                          | 1.78        | 1.90 | 2.04 | 0.070  | 0.075 | 0.080 |
| L                          | 0.30        | 0.43 | 0.55 | 0.012  | 0.017 | 0.022 |
| L1                         | 0.35        | 0.54 | 0.69 | 0.014  | 0.021 | 0.027 |
| HE                         | 2.10        | 2.40 | 2.64 | 0.083  | 0.094 | 0.104 |
| Т                          | 0°          |      | 10°  | 0°     |       | 10°   |

STYLE 21: PIN 1. GATE 2.

SOURCE 3. DRAIN

#### RECOMMENDED SOLDERING FOOTPRINT



ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent\_Marking.pdf">www.onsemi.com/site/pdf/Patent\_Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices or with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative