

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

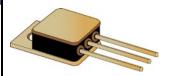
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


P-CHANNEL MOSFET

Qualified per MIL-PRF-19500/595

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N7236 switching transistor is military qualified up to the JANTXV level for high-reliability applications. This device is also available in a low profile U surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

TO-254AA Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N7236 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/595.
 (See part nomenclature for all available options.)
- · RoHS compliant by design.

Also available in:

"U" (SMD-1 or TO-267AB) package (surface mount) 2N7236U

APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25$ $^{\circ}$ C unless otherwise stated

Parameters / Test Cond	Symbol	Value	Unit	
Operating & Storage Junction Temperature Range		T _J & T _{stg}	-55 to +150	°C
Thermal Resistance Junction-to-Case	$R_{\Theta JC}$	1.0	°C/W	
Total Power Dissipation	@ T _A = +25 °C	Рт	4	W
	@ $T_C = +25 {}^{\circ}C^{(1)}$	ГΙ	125	VV
Gate-Source Voltage, dc		V_{GS}	± 20	V
Drain Current, dc @ $T_C = +25 {}^{\circ}C^{(2)}$		I_{D1}	-18	Α
Drain Current, dc @ $T_C = +100 {}^{\circ}C^{(2)}$		I _{D2}	-11	Α
Off-State Current (Peak Total Value) (3)		I _{DM}	-72	A (pk)
Source Current	`	I _S	-18	Α

NOTES:

- 1. Derate linearly by 1.0 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.
- 2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:

 $I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} x R_{DS(on)} @ T_J (max)}}$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Manufacturer's ID, part number, date code, BeO.
- WEIGHT: 6.5 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.				
I _F	Forward current				
R_{G}	Gate drive impedance				
V_{DD}	Drain supply voltage				
V_{DS}	Drain source voltage, dc				
V_{GS}	Gate source voltage, dc				

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage	ļ			
$V_{GS} = 0 \text{ V}, I_{D} = 1.0 \text{ mA}$	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold)				
$V_{DS} \ge V_{GS}$, $I_{D} = -0.25 \text{ mA}$	V _{GS(th)1}	-2.0 -1.0	-4.0	V
$V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = +125$ °C $V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA, $T_J = -55$ °C	$V_{\rm GS(th)2} \ V_{\rm GS(th)3}$	-1.0	-5.0	
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125 \text{ °C}$	I _{GSS1}		±100 ±200	nA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}$	I _{DSS1}		-25	μΑ
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -100 \text{ V}, T_J = +125 \text{ °C}$	I _{DSS2}		-1.0	mA
Drain Current $V_{GS} = 0 \text{ V}, V_{DS} = -80 \text{ V}, T_J = +125 ^{\circ}\text{C}$	I _{DSS3}		-0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = -11.0 \text{ A pulsed}$	r _{DS(on)1}		0.20	Ω
Static Drain-Source On-State Resistance V_{GS} = -10 V, I_D = -18.0 A pulsed	r _{DS(on)2}		0.22	Ω
Static Drain-Source On-State Resistance $T_J = +125 ^{\circ}\text{C}$ $V_{GS} = -10 \text{V}, I_D = -11.0 \text{A} \text{pulsed}$	r _{DS(on)3}		0.34	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = -18.0 \text{ A pulsed}$	V _{SD}		-5.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge $V_{GS} = -10 \text{ V}, I_D = -18.0 \text{ A}, V_{DS} = -50 \text{ V}$	$Q_{g(on)}$		60	nC
Gate to Source Charge $V_{GS} = -10 \text{ V}, I_D = -18.0 \text{ A}, V_{DS} = -50 \text{ V}$	Q_{gs}		13	nC
Gate to Drain Charge $V_{GS} = -10 \text{ V}$, $I_D = -18.0 \text{ A}$, $V_{DS} = -50 \text{ V}$	Q_{gd}		35.2	nC

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time $I_D = -11.0 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 9.1 \Omega, V_{DD} = -50 \text{ V}$	t _{d(on)}		35	ns
Rinse time $I_D = -11.0$ A, $V_{GS} = -10$ V, $R_G = 9.1$ Ω , $V_{DD} = -50$ V	t _r		85	ns
Turn-off delay time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω , V_{DD} = -50 V	t _{d(off)}		85	ns
Fall time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω , V_{DD} = -50 V	t _f		65	ns
Diode Reverse Recovery Time di/dt \leq 100 A/ μ s, V _{DD} \leq 30 V, I _F = -18.0 A	t _{rr}		280	ns

GRAPHS

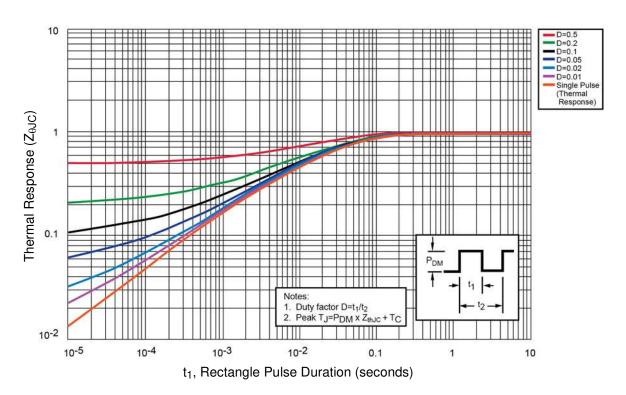


FIGURE 1
Thermal Impedance Curves

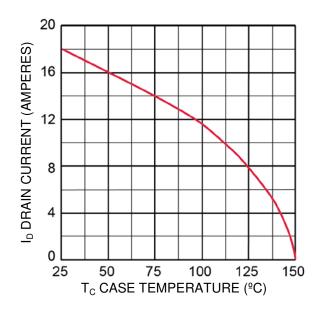


FIGURE 2

Maximum Drain Current vs Case Temperature Graphs

GRAPHS (continued)

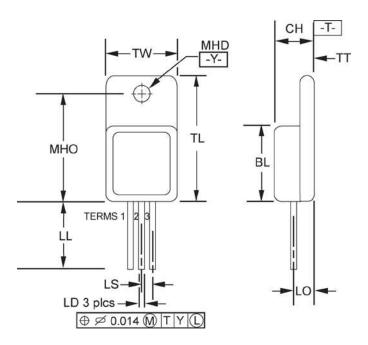


FIGURE 3

Maximum Safe Operating Area

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- Protrusion thickness of ceramic eyelets included in dimension LL.
- 4. All terminals are isolated from case.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

	Dimensions				
Ltr	Inc	Inch		Millimeters	
	Min	Max	Min	Max	
BL	.535	.545	13.59	13.84	
CH	.249	.260	6.32	6.60	
LD	.035	.045	0.89	1.14	
LL	.510	.570	12.95	14.48	3
LO	.150	.150 BSC		3.81 BSC	
LS	.150	BSC	3.81 BSC		
MHD	.139	.149	3.53	3.78	
МНО	.665	.685	16.89	17.40	
TL	.790	.800	20.07	20.32	4
TT	.040	.050	1.02	1.27	4
TW	.535	.545	13.59	13.84	
Term 1	Drain				
Term 2	Source				
Term 3	Gate	•			