

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

QUAD P-CHANNEL MOSFET

Qualified per MIL-PRF-19500/599

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This 2N7335 device is military qualified up to a JANTXV level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N7335.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/599.
- RoHS compliant version available (commercial grade only).

APPLICATIONS / BENEFITS

- High Frequency Operation.
- Lightweight.
- ESD to class 1A.

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted.

Parameters / Test Conditions	Symbol	Value	Unit	
Operating & Storage Temperature	T_{op},T_{stg}	-55 to +150	°C	
Thermal Resistance, Junction to Ambient	1 die 4 die	R _{eJA}	90 50	ºC/W
Thermal Resistance, Junction to Case	1 die	ReJC	17	_ō C/M
Gate – Source Voltage		V _{GS}	± 20	V
Continuous Drain Current @ T _C = +25 °C	I _{D1}	-0.75	Α	
Continuous Drain Current @ T _C = +100 °C	I _{D2}	-0.50	Α	
Max. Power Dissipation @ T _C = +25°C (free air	P _{D1}	1.4	W	
Maximum Drain to Source On State Resistance				
@ T _J :	MAX R _{ds(on)}	1.4	Ω	
@ T _J =		2.5		
Collector Efficiency	Is	-0.75	Α	
Single Pulse Avalanche Energy Capability	E _{AS}	75	mJ	
Repetitive Avalanche Energy Capability	Ear	.14	mJ	
Rated Avalanche Current (repetitive and nonre	I _{AR}	075	Α	
Off-State Current	I _{DM}	-3.0	A (pk)	

Notes: 1. Derated Linearly by 11 mW/°C for $T_C > +25$ °C.

2. $V_{GS} = -10 \text{ V}, I_D = -0.5 \text{ A}.$

MO-036AB Package

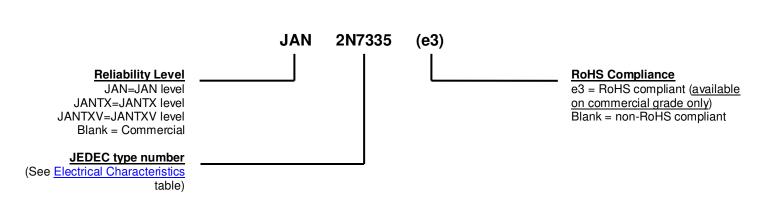
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ceramic, lid: alloy 42, Au over Ni plating.
- TERMINALS: Alloy 42, Au over Ni plating, solder dipped.
- MARKING: Manufacturer's ID, part number, date code.
- POLARITY: See package outline.
- WEIGHT: Approx. 1.3 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
I _D	Drain current.				
l _F	Forward current.				
T _C	Case temperature.				
V_{DD}	Drain supply voltage.				
V_{DS}	Drain to source voltage.				
V_{GS}	Gate to source voltage.				

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS	I		"	1
Drain-Source Breakdown Voltage	V	-100		V
$V_{GS} = 0 \text{ V}, I_D = -1 \text{ m A}$	$V_{(BR)DSS}$	-100		V
Gate-Source Voltage (Threshold)				
$V_{DS} \ge V_{GS}$, $I_D = -0.25$ mA	$V_{GS(th)1}$	-2.0	-4.0	V
$V_{DS} \ge V_{GS}$, $I_{D} = -0.25$ mA, $T_{j} = +125$ °C	$V_{GS(th)2}$	-1.0		V
$V_{DS} \ge V_{GS}, I_{D} = -0.25 \text{ mA}, T_{j} = -55 \text{ °C}$	$V_{GS(th)3}$		-5.0	
Gate Current				
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS1}		±100	nA
$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_j = +125 \text{ °C}$	I _{GSS2}		±200	
Drain Current				
$V_{GS} = 0 \text{ V}, V_{DS} = 80 \% \text{ of rated } V_{DS}$	I _{DSS1}		-25	μΑ
$V_{GS} = 0 \text{ V}, V_{DS} = 80 \% \text{ of rated } V_{DS}, T_j = +125 \text{ °C}$	I _{DSS2}		-0.25	mA
Static Drain-Source On-State Resistance				
V_{GS} = -10 V, cond. A pulsed per MIL-STD-750, sect. 4, I_D = -0.50 A	r _{DS(on)1}		1.4	Ω
$T_{j} = +125 ^{\circ}\text{C}$				
V_{GS} = -10 V, pulsed per MIL-STD-750, section 4, I_D = -0.50 A	r _{DS(on)2}		2.3	Ω
Diode Forward Voltage	V		5.5	V
$V_{GS} = 0 \text{ V}, I_D = -0.75 \text{ A}, \text{ pulsed per MIL-STD-750}, \text{ section 4}$	V _{SD}		5.5	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:	Condition B	0			
On-State Gate Charge		$Q_{g(on)}$		15	nC
Gate to Source Charge		Q_{gs}		7.0	IIC
Gate to Drain Charge		Q_{gd}		8.0	

SWITCHING CHARACTERISTICS

Parameters / Test Conditions			Min.	Max.	Unit
Switching time tests:					
Turn-on delay time	$I_D = -0.75 \text{ A}, V_{GS} = -10 \text{ V},$	t _{d(on)}		30	
Rinse time	Gate drive impedance = 7.5Ω ,	t _r		60	ns
Turn-off delay time	$V_{DD} = -50 \text{ V}$	t _{d(off)}		70	
Fall time		t _f		80	
Diode Reverse Recovery Time	di/dt ≤ -100 A/ μ s, V _{DD} ≤ -30 V, I _D =75 A	t _{rr}		200	ns

GRAPHS

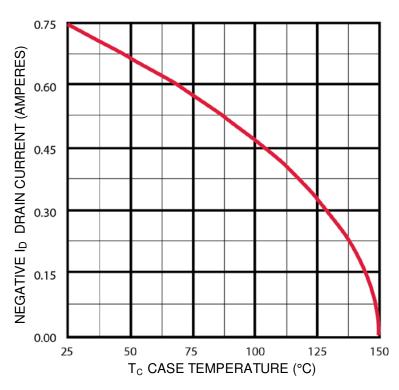


FIGURE 1 - Maximum Drain Current vs. Case Temperature Graph

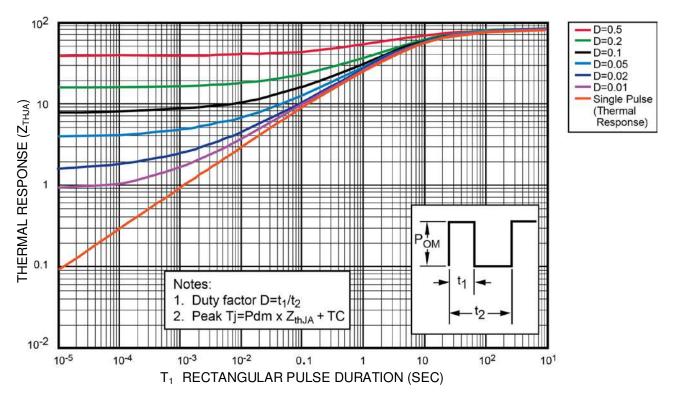


FIGURE 2 - Normalized Transient Thermal Impedance

GRAPHS (continued)

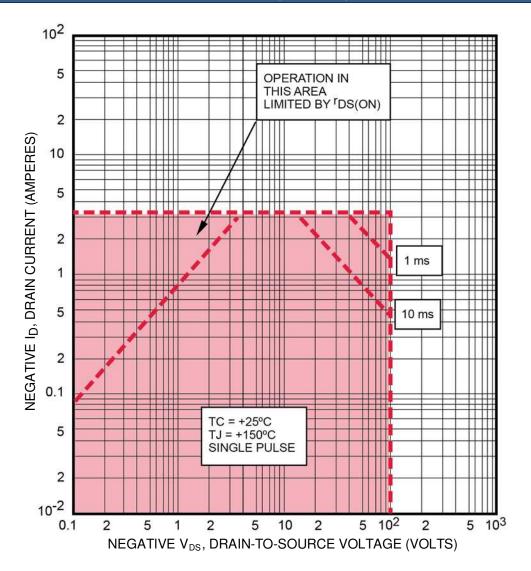
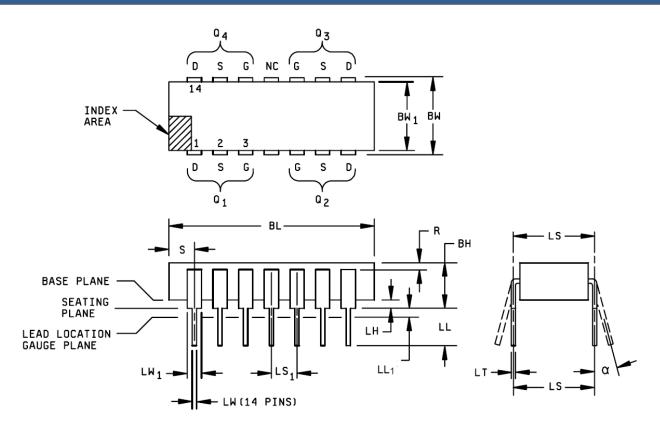



FIGURE 3 – Maximum Safe Operating Area

PACKAGE DIMENSIONS

	Dimensions				
Symbol	Inches		Millimeters		Notes
	Min	Max	Min	Max	
ВН	.105	.175	2.67	4.45	11
BL	.690	.770	17.53	19.56	
BW	.290	.325	7.37	8.26	
BW ₁	.280	.310	7.11	7.87	10
LH	.025	.055	0.64	1.40	11
LT	.008	.012	0.203	0.305	
LW	.015	.021	0.381	0.533	
LW ₁	.038	.060	0.97	1.52	

	Dimensions					
Symbol	Inches		Millimeters		Notes	
	Min	Max	Min	Max		
LS	.300) TP	7.62 TP		5, 6	
LS1	.100) TP	2.54 TP		5, 6	
LL	.125	.175	3.18	4.45	11	
LL ₁	.000	.030	0.00	0.76		
α	0°	15°	0°	15°	7	
R	.010		0.25			
S	.030	.095	0.76	2.41		
N	1	4	14		8	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Refer to applicable symbol list.
- 4. Dimensioning and tolerancing in accordance with ASME Y14.5.
- 5. Leads within +/- .005 inch (0.13 mm) radius of True Position (TP) at gauge plane with maximum material condition and unit installed.
- 6. LS₁ and LS applies in zone LL₁ when unit installed.
- 7. α applies to spread leads prior to installation.
- 8. N is the number of terminal positions.
- 9. Outlines on which the seating plane is coincident with the base plane (A₁ = 0), terminals lead standoffs are not required, and LW1 may equal LW along any part of the lead above the seating/base plane.
- 10. BW₁ does not include particles of package materials.
- 11. This dimension shall be measured with the device seated in the seating plane gauge JEDEC Outline No. GS-3.