Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China PrimeSTACK™ # 2PS13512E43W39689 ### **Preliminary data** ### **General information** ### IGBT Stack for typical voltages of up to 400 V_{RMS} Rated output current 900 A_{RMS} - · Solar power · Motor drives - · High power converter - $\begin{array}{l} \cdot \ 62mm \ power \ module \\ \cdot \ Trenchstop^{\text{TM}} \ IGBT4 \end{array}$ | Topology | 1/2 B2I | |----------------------------------|-------------------------------| | Application | Inverter | | Load type | resitive, indutive | | Semiconductor (Inverter Section) | 3x FF450R12KE4 | | Heatsink | water cooled | | Implemented sensors | current, voltage, temperature | | Driver signals IGBT | Electrical | | Design standards | EN 50178 | | Approvals | UL 508C | | Sales - name | 2PS13512E43W39689 | | SP - No. | SP001132612 | | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | $\mathsf{PrimeSTACK}^{\intercal_{\mathsf{M}}}$ # 2PS13512E43W39689 ### **Preliminary data** ### Absolute maximum rated values | Collector-emitter voltage | IGBT; T _{vj} = 25°C | V _{CES} | 1200 | V | |--------------------------------------|--|-------------------|------|-------------------| | Repetitive peak reverse voltage | Diode; T _{vj} = 25°C | V _{RRM} | 1200 | V | | Insulation management | according to installation height of 2000 m | V _{line} | 500 | V _{RMS} | | Insulation test voltage | according to EN50178, f = 50 Hz, t = 1 s | V _{ISOL} | 2.5 | kV _{RMS} | | Switching frequency inverter section | | f _{sw2} | 8 | kHz | #### Notes Further maximum ratings are specified in the following dedicated sections #### **Characteristic values** | DC Link | | min. | typ. | max. | | |---------------|-----------------|------|------|------|---| | Rated voltage | V _{DC} | | 650 | 850 | V | #### Notes The over voltage shutdown level is above the max.rated DC voltage. Therefore this function can not be used | Inverter Section | | | min. | typ. | max. | | |---|---|-----------------------|------|------|------|-------------------| | Rated continuous current | $ \begin{aligned} &V_{DC} = 650 \text{ V}, V_{AC} = 400 V_{RMS}, \cos(\phi) = 0.85, \\ &f_{AC \text{ sine}} = 50 \text{ Hz}, f_{sw} = 5000 \text{ Hz}, T_{inlet} = 40^{\circ}\text{C}, T_{j} \leq 125 ^{\circ}\text{C} \end{aligned} $ | I _{AC} | | | 900 | A _{RMS} | | Continuous current at low frequency | V_{DC} = 650 V, $cos(\phi)$ = 0.85, $f_{AC sine}$ = 0 Hz, f_{sw} = 5000 Hz, T_{inlet} = 40 °C, T_{j} \leq 125 °C | I _{AC low} | | | 540 | A _{RMS} | | Rated continuous current for 150% overload capability | $I_{AC~150\%}$ = 1080 A_{RMS} , $t_{on~over}$ = 60 s, $t_{recovery}$ = 600 s, $T_j \le$ 125 °C | I _{AC over1} | | | 720 | A _{RMS} | | Over current shutdown | within 15 μs | I _{AC OC} | | | 1860 | A _{peak} | | Power losses | I_{AC} = 900 A, V_{DC} = 650 V, V_{AC} = 400 V_{RMS} , $cos(\phi)$ = 0.85, $f_{AC sine}$ = 50 Hz, f_{sw} = 5000 Hz, T_{inlet} = 40 °C, $T_{j} \le$ 125 °C | P _{loss} | | | 2940 | W | #### Notes Maximum junction temperature limited to 125°C under all operating conditions ### **Controller interface** | Driver and interface board | ref. to separate Application Note | | | DR240 | | | |---|--|--|------|-------|------|---| | | | | min. | typ. | max. | | | Auxiliary voltage | | V _{aux} | 18 | 24 | 40 | V | | Auxiliary power requirement | V _{aux} = 24 V | Paux | | | 40 | W | | Digital input level | resistor to GND 10 kΩ, capacitor to GND 1 nF | V _{in low} | 0 | | 4 | V | | | | V _{in high} | 11 | | 15 | V | | Digital output level | open collector, logic low = no fault, max. 15 mA | V _{out low} | 0 | | 1.5 | V | | | | V _{out high} | | 15 | | V | | Analog current sensor output inverter section | load max 5 mA, @ 900 A _{RMS} | V _{IU} ana2
V _{IV} ana2
V _{IW} ana2 | 4.8 | 4.9 | 5 | ٧ | | Analog DC link voltage sensor output | load max 5 mA, @ 800 V | V _{DC} ana | 5.5 | 5.7 | 5.8 | V | | Analog temperature sensor output inverter section (Simulated) | load max 5 mA, @T _{NTC} = 55 °C, corresponds to T _j = 125 °C at rated conditions | V _{Theta sim2} | | 4.5 | | ٧ | | Over temperature shutdown inverter section | @T _{NTC} = 81 °C | V _{Error OT2} | | 10 | | V | | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | PrimeSTACK™ # 2PS13512E43W39689 ## Preliminary data | System data | | | | min. | typ. | max. | | |---------------------------------|--|---|--------------------|------|------|------|------| | EMC robustness | according to IEC 61800-3 at named | power | V_{Burst} | | 2 | | kV | | Livio robdonioco | interfaces | control | V _{Burst} | | 1 | | kV | | | | aux (24V) | V _{surge} | | 1 | | kV | | Storage temperature | | | T _{stor} | -40 | | 80 | °C | | Operational ambient temperature | PCB, DC link capacitor, bus bar, excludi medium | PCB, DC link capacitor, bus bar, excluding cooling medium T _{op amb} | | -25 | | 55 | °C | | Cooling air velocity | PCB, DC link capacitor, bus bar, standard atmosphere | | Vair | 0.3 | | | m/s | | Humidity | no condensation | no condensation | | 0 | | 85 | % | | Vibration | according to IEC 60721 | according to IEC 60721 | | | | 5 | m/s² | | Shock | according to IEC 60721 | | | | | 40 | m/s² | | Protection degree | | | | | IP00 | • | | | Pollution degree | | | | 2 | | | | | Dimensions | width x depth x height | | | 260 | 280 | 120 | mm | | Weight | | | | | 7.7 | | kg | | Heatsink water cooled | | | min. | typ. | max. | | |---------------------------|--|--------------------|------|----------|------|---------| | Water flow | according to coolant specification from Infineon | ΔV/Δt | 10 | | | dm³/min | | Water pressure | | | | 30 | | bar | | Water pressure drop | | Δρ | | | 8 | mbar | | Coolant inlet temperature | | T _{inlet} | -40 | | 70 | °C | | Cooling channel material | | | P | Aluminiu | m | | **Notes**Conditions are standard Infineon characterization for heatsinks. | Overview of optional components | Unit 1 | Inverter
Section | Unit 3 | |---------------------------------|--------|---------------------|--------| | Parallel interface board | | | | | Optical interface board | | | | | Chopper controller | | | | | Voltage sensor | | × | | | Current sensor | | × | | | Temperature sensor | | × | | | DC link capacitors | | | | Setting of Active Clamping TVS-Diodes: Vz = 824 V | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | PrimeSTACK™ # 2PS13512E43W39689 ### **Preliminary data** fo - derating curve IGBT (motor), Diode (generator) $\cos(\text{phi}) = \pm \ 0.85 \\ T_{\text{cool medium}} = 40^{\circ}\text{C}$ fsw - derating curve IGBT (motor), Diode (generator) $\cos(phi) = \pm 0.85 \\ T_{\text{cool medium}} = 40^{\circ}\text{C}$ Continuous current derating curves vs. dc link voltage $cos(phi) = \pm 0.85$ $T_{cool\ medium} = 40^{\circ}C$ Continuous current derating curves vs. Toool medium $cos(phi) = \pm 0.85$ | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | PrimeSTACK™ # 2PS13512E43W39689 ### **Preliminary data** Zth heat sink to ambient per switch | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | PrimeSTACK™ # 2PS13512E43W39689 ### **Preliminary data** # **Mechanical drawing** | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | PrimeSTACK™ # 2PS13512E43W39689 ### **Preliminary data** ### Circuit diagram | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 | PrimeSTACK™ # 2PS13512E43W39689 ### **Preliminary data** #### **Terms & Conditions of usage** The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application. This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.infineon.com, sales&contact). For those that are specifically interested we may provide application notes. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend - to perform joint Risk and Quality Assessments; - the conclusion of Quality Agreements; - to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures. If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved. #### **Safety Instructions** Prior to installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced. To installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced. | prepared by: OW | date of publication: 2014-07-16 | |-----------------|---------------------------------| | approved by: YZ | revision: 2.0 |